

Roteiros elaborados com base na documentação que acompanha o conjunto por: *Otávio Augusto T. Dias* IFT-SP *& Elias da Silva* PUC-SP

Conteúdo

Número	Experimento	Página
1	Difração de luz através de uma fenda em uma barreira	4
2	Difração através de uma fenda e o princípio de incerteza de Heisenberg	9
3	Difração de luz através de dupla fenda ou de uma rede	16
4	Biprisma de Fresnel	21
5	Interferômetro de Michelson	26
6	Determinação do índice de refração do ar com o interferômetro de Michelson	30
7	Determinação do índice de refração do CO ₂ com o interferômetro de Michelson	36
8	Lei de Lambert da radiação	40
9	Interferômetro de Twyman-Green	44

Equipamentos

	127 V	220 V	
Tela, com fenda em forma de seta	08133.01	08133.01	1
Tela de vidro fosco, 50x50x2 mm ³	08136.01	08136.01	1
Prisma, 90 graus, h.30 mm, crown	08236.00	08236.00	1
Filtro colorido, 440 nm	08412.00	08412.00	1
Filtro colorido, 525 nm	08414.00	08414.00	1
Filtro colorido, 580 nm	08415.00	08415.00	1
Filtro colorido, 595 nm	08416.00	08416.00	1
Diafragma, 3 fenda única	08522.00	08522.00	1
Diafragma, 4 duplas fendas	08523.00	08523.00	1
Diafragma, 4 múltiplas fendas	08526.00	08526.00	1
Rede de difração, 600 linhas/mm	08546.00	08546.00	1
Biprisma de Fresnel	08556.00	08556.00	1
Prato de Mica	08558.00	08558.00	1
Filtro de polarização, 50 x 50mm	08613.00	08613.00	2
Filtro de polarização, 50 x 50mm	08613.00	08613.00	1
Célula de vidro para efeito Faraday	08625.00	08625.00	1
Amostras celofane, conjunto de 3	08680.00	08680.00	1
Placa de base magnética	08710.00	08710.00	3
Suporte de ajuste 35 x 35 mm	08711.00	08711.00	2
Suporte de ajuste 35 x 35 mm	08711.00	08711.00	1
Suporte de ajuste 35 x 35 mm	08711.00	08711.00	1
Superfície espelhada 30 x 30 mm	08711.01	08711.01	2
Dispositivo corrediço, horizontal	08713.00	08713.00	1
Trilho guia giratório com escala angular	08717.00	08717.00	1
Prendedor para diafragma./divisor de feixe	08719.00	08719.00	1
Divisor de feixe 1/1, não polarizado	08741.00	08741.00	1
Divisor de feixe 1/1,não polarizado	08741.00	08741.00	1
Bomba de vácuo manual	08745.00	08745.00	1
Diafragmas, d 1, 2, 3, 5 mm	09815.00	09815.00	1
Diafragmas, d 1, 2, 3, 5 mm	09815.00	09815.00	1
Diafragma com furo, d=20mm	09816.01	09816.01	1
Diafragma com guadrado	09816.03	09816.03	1
Espelho côncavo/convexo com plug	09821.00	09821.00	1
Suporte com escala no suporte deslizante	09823.00	09823.00	1
Tela, branca, 150x150mm	09826.00	09826.00	1
Espelho plano, 100x85 mm	09921.00	09921.00	1
Base prato E	11600.00	11600.00	2
Lâmpada para experimento 5	11601.00	11601.00	1
Base magnética	11602.00	11602.00	1
Base magnética	11602.00	11602.00	3
SISTEMA AVANCADO DE ÓPTICA	11604.08	11604.08	1
Prendedor de diafragma, ajustável	11604.09	11604.09	2
Fita para gravação, 10 mm Jargura	11607.01	11607.01	-
Suporte c/ graduação – base magnética	11608.02	11608.02	2
Fonte de alimentação 0-12V DC/6V.12V AC e	13505.98	13505.93	-

Copo de vidro, pequeno,400 ml	36014.00	36014.00	1
Prendedor de lente com lente +20mm, Ý25	41724.9E	41724.9E	2
Laser, He-Ne, 0.5 mW, polarização aleatória	41725.0E	41725.0E	1
Conjunto de mangueira, silicone	41725.1E	41725.1E	1
Base prato com precisão	41727.2E	41727.2E	1
Suporte CUVETTE	41727.3E	41727.3E	1
Prato de vidro 50 X 50	41727.4E	41727.4E	1
Prendedor de prato, modificado com direcionador	41727.5E	41727.5E	1
Lente TWYMAN GREEN no suporte	41727.6E	41727.6E	2
Suporte COMP. LINSE	41727.7E	41727.7E	1
Prendedor para componentes	41737.0T	41737.0T	3
Fixador de componentes com haste	41737.2E	41737.2T	3
Fotômetro, display digital 019.9 mW, 635780 nm, 4 faixas	δ,		
precisão 10%	41738.4E	41738.4E	1
Lentes +20 mm no prendedor	41739.0E	41739.0E	1
Lentes -20mm no prendedor	41739.1E	41739.1E	1
Lentes +50mm no prendedor	41739.3E	41739.3E	1
Lentes +150mm no prendedor	41739.4E	41739.4E	1
Lentes +250mm no prendedor	41739.5E	41739.5E	1
Pratos adaptadores	41739.6E	41739.6E	5
Literatura, Óptica Introdutória e avançada, óptica Laser	41739.7E	41739.7E	1
Holograma 102mm x 127mm	42264.4E	42264.4E	1
Caixa c/ espuma	42651.4E	42651.4E	1

Difração de luz através de uma fenda em uma barreira

Conceitos utilizados

Intensidade, integral de Fresnel, difração de Fraunhofer.

Princípios e objetivo

Luz monocromática incide sobre uma superfície ou uma barreira. A distribuição da intensidade da figura de difração é determinada.

Equipamentos

Prato base com pés de borracha Laser de HeNe Suporte ajustável 35 x 35 mm Superfície espelhada 30 x 30 mm Lentes no suporte, f = +20 mm Pé imantado Suporte de componentes Suporte de diafragma, rosqueável Abertura com três fendas simples Dispositivo deslizante, horizontal Tela, branca, 150 x 150 mm Cabo de conexão vermelho, l = 500 mm Fotômetro

1

Montagem e procedimentos

A montagem experimental é mostrada na fig. 1. A altura recomendada para a montagem (altura da trajetória do feixe) deve ser de 110 mm.

Após ser refletido pelo espelho **M**, o feixe laser tem seu tamanho ampliado pelas lentes **L** (f= +20 mm).

Para difração através de uma fenda, o feixe laser é direcionado simetricamente sobre os limites verticais da fenda.

A tela é colocada a uma determinada distância (no prato óptico ou e. g. 3 m). A largura da fenda pode ser calculada

$$b = \frac{2m+1}{2 \cdot \sin \alpha_m} \cdot \lambda$$

sendo $sin\alpha_m = \frac{x_m}{\sqrt{x_m^2 + r^2}}$ e

b = largura da fenda; m = ordem do pico à partir do centro; x_m = largura do m-ésimo pico; r = distância entre a fenda e a tela; λ = comprimento de onda do laser.

(* somente necessário para laser de 5mW)

Para difração em uma barreira, troca-se a tela pela fotocélula que fica presa à base óptica (prato base) e conectada ao voltímetro.

Mede-se a intensidade l_c sem incidência de laser (valor escuro) e com incidência de laser (valor claro). Estes valores devem ser levados em consideração para posterior análise.

Posiciona-se a fronteira (de uma fenda) no feixe laser de tal forma que metade do mesmo fique coberta. O voltímetro deve indicar metade da escala de deflexão.

Distribuição de intensidade pode ser medida através da escala no dispositivo deslizante ($1U \cong 500 \ \mu m$).

Teoria e Análise

Se luz de um comprimento de onda λ incide sobre uma fenda de largura *D*, cada ponto da fenda se torna a origem de uma nova onde esférica. Devido à interferência entre as novas ondas, o padrão de difração aparece numa tela atrás da fenda.

Fig. 2 Geometria e magnitude da fenda de difração

Utilizando a aproximação de Fraunhofer nesta difração, a intensidade num ponto *P* numa tela paralela à fenda, usando as mesmas designações da fig. 2, é

$$I = c \cdot \left(\frac{\sin\frac{\pi b}{\lambda}\sin\theta}{\frac{\pi b}{\lambda}\sin\theta}\right)^2$$
(1)

onde c é uma constante dependente do comprimento de onda e da geometria. Máximos de intensidade ocorrerão em

$$\tan\frac{\pi b}{b}\sin\theta = \frac{\pi b}{\lambda}\sin\theta.$$

O primeiro máximo aparece quando $\theta = 0$. Os picos seguintes ocorrem quando o argumento da tangente assume os seguintes valores:

1,49 π, 2,459 π, 3,47 π, 4,479 π, ... enquanto os mínimos ocorrem quando

$$\frac{\pi}{b}\sin\theta = n\pi$$
; *n*=1, 2, 3,

Os mínimos são, mediante aproximação, equidistantes (para *a>x*):

$$x=n\cdot\frac{a\cdot\lambda}{b}.$$

Fig. 3: Distribuição de intensidade para difração através de uma fenda como uma função da posição ao longo de uma linha reta paralela ao plano da fenda, normalizada de acordo com a intensidade l_0 sem fenda

Se a luz atingir uma fenda reta (paralela ao eixo *Y*) ela é difratada. Se a origem das coordenadas for escolhida como o ponto de intersecção da linha *PQ* conectando a fonte de luz e o ponto de incidência do feixe no plano da tela, a distribuição de intensidade após a barreira difratora é

$$I = \frac{I_0}{2} \left[(U(\infty) + \frac{1}{2})^2 + (V(\infty) + \frac{1}{2})^2 \right].$$
 (2)

Fig. 4: Difração por barreira

Usando as designações da fig. 4, obtém-se

$$I_0 = \frac{1}{\left(R_0 + R\right)^2}$$
(3)

$$\omega = x \cos \delta \sqrt{\frac{2}{\lambda} \left(\frac{1}{R_0} + \frac{1}{R}\right)}$$
(4).

U e *V* são integrais de Fresnel. Elas são definidas como:

Fig. 5: Distribuição de intensidade paa difração por uma barreira como uma função da posição em uma linha reta perpendicular à direção da barreira e à linha que une a fonte de luz e a barreira, normalizado à intensidade l_0 sem barreira

ż

A intensidade decresce de maneira monotônica no lado sombreado. No lado claro, surgem picos e mínimos de intensidade, enquanto de acordo com (3), a intensidade total decresce de acordo com o quadrado da distância entre a fonte de luz e o ponto de incidência.

Difração através de uma fenda e o princípio de incerteza de Heisenbera

Conceitos utilizados

Difração, focalização da difração, fórmula de difração de Kirchoff, medidas de precisão, incerteza local, incerteza no impulso, dualidade onda-matéria, relação de de Broglie.

Princípio

A distribuição de intensidade no padrão da difração de Fraunhofer por uma fenda é medida. Os resultados medidos são analisados na representação ondulatória através de comparação com a fórmula de difração de Kirchoff e na representação fotônica, de modo à verificar o princípio de incerteza de Heisenberg.

Equipamento

Prato base com pés de borracha Laser de HeNe Suporte ajustável 35 x 35 mm Superfície espelhada 30 x 30 mm Despositivo deslizante, horizontal Pé imantado Suporte de diafragma, atachável Abertura com três fendas simples Cabo de conexão vermelho. *l*= 500 mm Fotômetro

Problemas

- 1. A distribuição de intensidade do padrão da difração de Fraunhofer por uma simples fenda é medida. As amplitudes dos picos e dos pontos de mínimo são calculados de acordo com a fórmula de difração de Kirchoff e comparado aos valores medidos.
- 2. Calcula-se a incerteza no momento com a ajuda de padrões de difrações de fendas simples de diferentes larguras, e verifica-se então a relação de incerteza de Heisenberg.

Montagem e procedimentos

A montagem experimental é mostrada na fig. 1. A altura recomendada para a montagem (altura do caminho do feixe) deve ser de 110 mm.

1335 - Sistema avançado de óptica

Fig. 1: Montagem experimental para difração através de uma fenda

(* somente necessário para laser de 5mW)

O laser deve ser ligado cerca de ½ hora antes do início do experimento, para que se tenha certeza de que a intensidade da luz do laser será constante durante o experimento.

A luz do laser é ajustada sucessivamente às fendas **S** de diferentes larguras através do espelho regulável **M**.

A distribuição de intensidade é medida com um fotômetro no dispositivo de medida deslizante. A tensão é proporcional à intensidade da luz incidente. O desvio é feito com um micrômetro ($1U \cong 500 \mu m$).

Para uma largura da fenda, o pico principal é registrado em um lado, juntamente com o primeiro pico secundário. Para outras larguras da fenda, é suficiente registrar ambos os mínimos à esquerda e à direita do pico principal, de modo a determinar *a* (fig. 2).

As medidas devem ser feitas num quarto preferencialmente escuro ou com luz ambiente constante (configurado em zero o amplificador de medida universal).

Teoria e análise

1. <u>Consideração de acordo com a representação ondulatória</u>

Quando um feixe de luz monocromáico, coerente e paralelo de comprimento de λ atravessa uma fenda simples de largura *d*, um padrão de difração com um pico principal e diversos picos secundáriosé obtido na tela (fig. 2).

De acordo com a fórmula de difração de Kirchoff, a intensidade, que é uma função do ângulo de deflexão *a*, é

$$J(\alpha) = J(0) \cdot \left(\frac{\sin\beta}{\beta}\right)^2 \tag{1}$$

com

$$\beta = \frac{\pi \cdot d}{\lambda} \cdot \sin \alpha.$$

Mínimos de intensidade estão posicionados em

$$a_n = \arcsin(n) \cdot \frac{\lambda}{d}$$

onde *n*=1, 2, 3,

Para os picos de intensidade, obtém-se os ângulos

$$a_0 = 0$$
,

$$a_1' = \arcsin(1,430) \cdot \frac{\lambda}{d},$$
$$a_2' = \arcsin(2,459) \cdot \frac{\lambda}{d}.$$

As alturas relativas dos picos secundários são:

$$J(\alpha_1) = 0,0472 \cdot J(0) ,$$
$$J(\alpha_1) = 0,0165 \cdot J(0) .$$

Valores medidos são comparados aos valores calculados.

Fig. 3: Distribuição da intensidade do padrão de difração de uma fenda de 0,05 mm de largura, a uma distância de 490 mm

<u>Mínimos</u>		
	Medidos	Calculados
α_1	0,36	0,36
α_2	0,72	0,72
α_3	1,04	1,07
<u>Máximos</u>		
	Medidos	Calculados
άı	0,52	0,51
ά2	0,88	0,88
	$\frac{J(\alpha_1)}{J(0)} = 0,044;$	

$$\frac{J(\alpha_1)}{J(0)} = 0,044;$$

$$\frac{J(\alpha_2)}{J(0)} = 0.014;$$

$$\frac{J(\alpha_2)}{J(0)} = 0,017$$

Isso permite a verificação da fórmula de difração de Kirchoff dentro dos limites dos erros.

2. <u>Consideração de acordo com a mecânica quântica</u>

O princípio de incertezas de Heisenberg afirma que duas quantidades canônicamente conjugadas, e. g. posição e momento, não podem ser determinadas de forma exata simultaneamente.

Como exemplo, consideremos um grupo de fótons cuja probabilidade é descrita pela função f_y e cujo momento é descrito pela função f_p . As incertezas na posição e no momento são definidas pelos desvios padrões, que resultam em

$$\Delta y \cdot \Delta p \ge \frac{h}{4\pi} \tag{2}$$

onde h=6,6262 \cdot 10⁻³⁴ que é a constante de Planck.Essa igualdade é válida para variáveis com distribuição gaussiana. Para um fluxo de fótons que atravessam uma fenda de largura *d*, pode-se escolher

$$\Delta y = d . \tag{3}$$

Enquanto os fótons anteriores à fenda podem mover-se somente perpendicularmente ao plano da fenda (direção x), eles também possuem uma componente na direção y após a fenda.

A densidade de probabilidade para a componente de velocidade v_y é dada através da distribuição de intensidade do padrão de difração. O primeiro mínimo é usado para definir a incerteza da velocidade(figs. 2 e 4)

$$\Delta v_{v} = c \cdot \sin \alpha_{1}, \qquad (4)$$

sendo α_1 o ângulo do primeiro mínimo. A incertezano momento será, então,

$$\Delta p_{y} = m\Delta v_{y} = m \cdot c \cdot \sin \alpha_{1}$$
 (5)

onde *m* é a massa do fóton e *c* a velocidade da luz.

Fig. 4: Geometria para difração através de uma simples fenda; a) caminho percorrido; b) componentes de velocidade de um fóton

A relação de de Broglie,

$$\frac{h}{\lambda} = h = m \cdot c , \qquad (6)$$

relaciona o momento e o comprimento de onda de uma partícula. Logo,

$$\Delta p_{y} = \frac{h}{\lambda} \cdot \sin \alpha_{1}$$
 (7)

e, de acordo com (1), o ângulo α_1 do primeiro mínimo será

$$\sin \alpha_1 = \frac{\lambda}{d}$$
. (8)

Substituindo (8) em (7) e (3), o princípio de incerteza resulta em

$$\Delta y \cdot \Delta p_{y} = h. \tag{9}$$

Se a largura da fenda, Δy , decrescer, o primeiro mínimo do padrão de difração é encontrado para maiores ângulos α_1 .

Experimentalmente, o ângulo α_1 é dado pela posição do primeiro mínimo de intensidade (fig. 4a),

$$\tan \alpha_1 = \frac{a}{b}.$$
 (10)

Substituindo (10) em (7),

$$\Delta p = \sin\left(\arctan\left(\frac{a}{b}\right),\tag{11}$$

e substituindo (3) e (11) em (9) e dividindo por h,

$$\frac{d}{\lambda}\sin\left(\arctan\frac{a}{b}\right) = 1.$$
 (12)

Os resultados das medidas verificam (12) dentro dos limites de erros.

Width of slit* dfmm	1 st minimum a/mm	$\frac{d'}{\lambda} \sin (\arctan \frac{a}{b})$ $b = 485 \text{mm}$
0.101	3.05	1.00
0.202	1,50	0,99
0.051	6.06	1.01

Tabela 1

*as larguras das fendas foram medidas com um microscópio

Difração de luz através de fenda dupla ou de uma rede

Conceitos utilizados

Difração de Fraunhofer, princípio de Huyghens, intereferência múltipla do feixe.

Princípios

A difração de uma onde de luz plana, monocromática, de comprimento de onda λ devido a um conjunto formado por um número variável de fendas N equidistantes é investigado.

Equipamentos

Prato base com pés de borracha Laser de HeNe Suporte ajustável 35 x 35 mm Superfície espelhada 30 x 30 mm Pé imantado Suporte de diafragma, atachável Abertura com quatro fendas duplas Abertura com quatro fendas múltiplas Despositivo deslizante, horizontal Cabo de conexão vermelho, *l*= 500 mm Fotômetro

Fig.1: Montagem experimental para difração através de dupla fenda ou por rede (* apenas necessário para laser de5 mW)

Montagem e procedimentos

A montagem experimental é mostrada na fig. 1. A altura recomendada para a montagem (altura da trajetória do feixe) deve ser de 110 mm.

O feixe de luz é dirigido pelo espelho M à abertura com múltiplas fendas S.

Um padrão de interferência é formado após as fendas múltiplas e sua distribuição de intensidade é medida para diferentes números de fendas, larguras e constantes de grades (indicações exatas na tela de abertura múltipla).

O ângulo de difração ϕ é obtido à partir da relação

$$\sin \varphi = \frac{x}{\sqrt{x^2 + r^2}}$$

onde x é a distância ao pico central e r a distância entre fenda e plano de observação.

Fig.2: Representação da difração da luz através de duas fendas.

Uma fotocélula LD é utilizada para medir a distribuição de intensdade. Para tanto, o zero do amplificador de medidas é ajustado com o laser desligado para iniciar. A amplificação deve ser ajustada de forma que a tensão máxima não aumente para mais do que o pico de tensão de aproximadamente 10V na área de grande intensidade (pico central).

A distribuição de intensidade no plano do observador pode ser medida através da escala no dispositivo deslizante ($1U = 500 \mu m$)

As distribuições obtidas são comparadas aos valores teóricos.

Teoria e Análise

O padrão de difração após uma rede pode ser obtido através de superposição de padrões de interferência de fendas simples (singulares) da rede.

Uma rede consiste de um conjunto regular de N fendas equidistantes, de modo que N feixes de luz paralelos são obtidos (fig. 2).

A diferença no caminho do feixes da borda de uma fenda de largura b é

$$d_1 = b \cdot \sin \varphi$$
,

resultando numa diferença de fase de

$$\delta_1 = \frac{2 \cdot \pi \cdot d_1}{\lambda} = \frac{2 \cdot \pi \cdot b \cdot \sin \varphi}{\lambda}.$$
 (1)

A diferença de trajetórias para feixes que passam por duas fendas é

$$d_2 = s \cdot \sin \varphi$$
,

onde s é a distância entre duas fendas (constante da rede). Essa diferença resulta numa diferença de fase

$$\delta_2 = \frac{2 \cdot \pi \cdot d_2}{\lambda} = \frac{2 \cdot \pi \cdot s \cdot \sin \varphi}{\lambda}.$$
 (2)

Quando *N* feixes são desviados para o ponto de observação *D* por um ângulo de difração φ , a seguinte intensidade é encontrada com a amplitude E_{φ} de um feixe difratado:

$$J_{\varphi} = E_{\varphi}^{2} \cdot \frac{\sin^{2}\left(N \cdot \frac{\delta_{2}}{2}\right)}{\sin^{2}\left(\frac{\delta_{2}}{2}\right)}.$$
 (3)

Agora E_{φ}^2 é a intensidade do feixe difratado por uma única fenda na direção φ ,

$$E_{\varphi}^{2} = \frac{\sin^{2}\left(\frac{\delta_{1}}{2}\right)}{\left(\frac{\delta_{1}}{2}\right)^{2}}.$$
 (4)

A intensidade de difração da rede toda é obtida com uma combinação das equações (3) e (4),

$$J_{\varphi} = \frac{\sin^2 \left(\frac{\pi \cdot b}{\lambda} \cdot \sin\varphi\right)}{\left(\frac{\pi \cdot b}{\lambda} \cdot \sin\varphi\right)^2} \cdot \frac{\sin^2 \left(\frac{\pi \cdot N}{\lambda} \cdot s \cdot \sin\varphi\right)}{\sin^2 \left(\frac{\pi}{\lambda} \cdot s \cdot \sin\varphi\right)}.$$
(5)

A primeira parte do produto de (5) é a distribuição de intensidade através de uma única fenda e a segunda parte é a interação da difração devida à N fendas. Isso mostra que o mínimo de cada fenda é mantido no caso da rede pois se o primeiro fator for nulo, o produto também é nulo.

De acordo com Fraunhofer, os máximos e mínimos de cada fenda são chamados de interferência de primeira ordem, enquanto mãximos e mínimos causados pelo efeito simultâneo de várias fendas sãos chamados de interferência de segunda ordem.

<u>Caso especial: N = 2 (fenda dupla)</u>

A distribuição de intensidade para difração por uma fenda é

$$J_{\varphi} = \frac{\sin^2 \left(\frac{\pi \cdot b}{\lambda} \cdot \sin\varphi\right)}{\left(\frac{\pi \cdot b}{\lambda} \cdot \sin\varphi\right)^2} \cdot \frac{\sin^2 \left(\frac{2 \cdot \pi}{\lambda} \cdot s \cdot \sin\varphi\right)}{\sin^2 \left(\frac{\pi}{\lambda} \cdot s \cdot \sin\varphi\right)};$$

(a) mínimos de primeira classe (zeros do numerador do primeiro fator),

$$\sin \varphi_k = \frac{k \cdot \lambda}{b}, \ (k = 1, 2, 3, ...)$$
 (7)

sendo que, com k = 0 é obtido o máximo central de primeira ordem;

(b) mínimos de segunda ordem (zeros do numerador do segundo fator e não simultâneamente do denominador).

$$\sin \varphi_k = \frac{2k+1}{2s} \cdot \lambda$$
, $(k = 0, 1, 2, 3, ...);$ (8)

(c) Os zeros comuns ao numerador e denominador do segundo fator são os máximos de segunda ordem (máximos principais),

$$\sin \varphi_k = k \cdot \frac{\lambda}{s}, \ (k = 0, \ 1, \ 2, \ 3, \ ...).$$
 (9)

Fig.3: Distribuião qualitativa das intensidades para difração através de 2 e 4 fendas, a distância x sendo normalizada para $\lambda/2$. A distribuição de intensidade de uma simples fenda é representada com altura exagerada para dar uma melhor visão.

Fendas múltiplas, rede:

Os máximos principais (picos de segunda classe) se tornam mais pronunciados com o aumento do número de fendas N, porque as intensidades desses máximos são proporcionais à N^2 .

O invólucro do padrão de interferência é idêntico ao padrão de interferência de uma única fenda de largura *b*. Entre os máximos principais, sempre existem (N-2) máximos secundários (ver fig. 3).

Biprisma de Fresnel

Conceitos utilizados

Comprimento de onda, fase, Fresnel, biprisma, fonte de luz virtual.

Princípios

Interferência de luz é feita por divisão da frente de onda em um biprisma de Fresnel. O comprimento de onda é determinado à partir das estruturas de interferência.

Equipamentos

Prato base com pés de borracha Laser de HeNe Suporte ajustável 35 x 35 mm Superfície espelhada 30 x 30 mm Suporte de componentes Lentes no suporte, f = +20 mm Lentes no suporte, f = +250 mm Mesa de prisma com suporte Biprisma de acordo com Fresnel Pé imantado Fita métrica

Fig.1: Montagem experimental para interferência de luz (*necessário somente para laser de 5 mW)

Problema

Determinação do comprimento de onda da luz usando a interferência por um biprisma de Fresnel.

Montagem e procedimentos

A montagem experimental é mostrada na fig. 1. A altura recomendada para a montagem (altura da trajetória do feixe) deve ser de 110 mm. No começo, as lentes L_2 não são posicionadas ($L_2 = L+250$).

Uma superfície limpa situada em uma distância de 2 a 5 m é utilizada como anteparo.

Após ajustar o caminho do feixe com o espelho, posiciona-se o biprisma em seu suporte.

O feixe alargado atinge a barreira central do biprisma.

As duas fontes de luz virtuais são projetadas pela lente L_2 em uma superfície limpa à 3 m de distância.

A distância entre os pontos de luz, entre a imagem formando a lente L_2 e a imagem tal como a magnitude do objeto (lente L_1 até lente L_2 menos a distância focal da lente L_1) são medidas ($L_1 = L(+20)$).

Se a lente L_2 é removida, observa-se um padrão de interferência. A distância entre *m* faixas de interferência sucessivas é medida.

Fig.2: linhas geométrica do espelho de Fresnel.

Se o comprimento de luz λ de dois pontos luminosos com diferença de fase constante (coerente) atingem um ponto *P*, os feixes interferem.

Se as duas amplitudes vetoriais de propagação na direção *x* são representadas por

$$s_i = a_i \cdot \exp\left(\frac{\pi}{\lambda} - \delta_i\right)$$

onde δ_i são as fases, de modo que cada intensidade é dada por

$$I_i = s_i \cdot s_i^*$$

a superposição será

$$I = I_1 + I_2 + 2\sqrt{I_1 I_2} \cos \delta$$
 (1)

com

$$\delta = \delta_1 - \delta_2$$

De acordo com (1), *I* tem máximo e mínimo como uma função da diferença de fase δ . No caso do espelho de Fresnel, uma onda proveniente da fonte de luz Q atinge dois espelhos inclinados um contra o outro por um ângulo α . O padrão de interferênciaé observado na tela **S**. O espelho com a fonte de luz pode ser trocado por duas fontes de luz Q_1 e Q_2 separadas por uma distância *d* emitindo coerentemente.

Sendo a distância entre Q e o ponto A onde os espelhos estão juntos r, a fig. 2 resulta

 $AQ_1 = AQ_2 = r$

 $d = 2r\sin\alpha$.

e

Se a diferença *a* entre o anteparo e os espelhos for grande quando comparada à distância entre dois máximos vizinhos, obtém-se a aproximação

$$r_2 = r_1 = a ,$$
$$r_2 - r_1 = \frac{pd}{a}$$

pois

$$(r_2 - r_1) \cdot (r_2 + r_1) = 2 p d$$
.

Assim, a diferença de fase δ é

$$\delta = 2 \cdot \pi \cdot \frac{r_2 - r_1}{\lambda} = \frac{2\pi pd}{\lambda a} \,.$$

De acordo com (1), máximos ocorrem no anteparo tela para distâncias *p*:

$$p = n \frac{\lambda a}{d}, \ n = 0, \ 1, \ 2, \ \dots$$
 (2)

e mínimos para

$$p = \left(n + \frac{1}{2}\right) \frac{\lambda a}{d}, \ n = 0, \ 1, \ 2, \ \dots$$
 (3)

A distância d entre as duas fontes de luz virtuais é determinada projetando-as da melhor forma possível em um anteparo com uma lente de distância focal f e medindo o tamanho B da imagem,

$$\frac{1}{g} + \frac{1}{b} = \frac{1}{f},$$

e

$$\frac{g}{b} = \frac{d}{B},$$

onde g é a distância do objeto e b a distância da imagem. E, assim,

$$d = \frac{Bf}{b-f}.$$
 (4)

 λ foi determinado à partir das equações (2), (3) e (4) como a média de várias medidas com diferentes inclinações do espelho,

$$\lambda = 626,5 \,\mathrm{nm}.$$

Nos caso do biprisma de Fresnel, a distância d é determinada pela equação (4), exatamente como no caso do espelho de Fresnel.

Da mesma maneira, a equação (3) é válida para distâncias p entre as faixas de interferência se for negligenciada a influência do índice de refração e da espessura do prisma. Com (4), (3) e (2) o comprimento de onda será:

 $\lambda = 624,0 \, \text{nm}.$

Fig.3: Linhas geométricas do biprisma de Fresnel.

Interferômetro de Michelson

Conceitos utilizados

Interferência, comprimento de onda, índice de refração, velocidade da luz, fase, fonte virtual de luz.

Princípios

A luz sofre interferência , após passar por espelhos conforme a montagem d eMichelson. O comprimento de onda é determinado ao desviar um dos espelhos.

Equipamentos

Prato base com pé de emborrachado Laser HeNe Suporte com ajuste 35 x 35 mm Superfície espelhada 30 x 30 mm Pé magnético Interferômetro de Michelson Suporte para componentes Lentes fixadas, f=+20 mm Tela, branca, 150 x 150 mm

Problemas

Determinação do comprimento de onda da luz laser utilizada.

Fig.1: Montagem experimental para interferômetro de Michelson

Montagem e procedimentos

A montagem experimental é a mostrada na fig.1. A altura recomendada da montagem (altura da trajetória do feixe) é de 110 mm.

Após o caminho do feixe de laser estar ajustado com o espelho regulável M, os dois espelhos do interferômetro estarão ajustados.

Para iniciar, as lentes fixadas de f= +20 mm, devem ser removidas. O feixe de laser encontra com o espelho semi transparente em um ângulo de 45° e é dividido.

Os dois feixes parciais são refletidos pelo espelho correspondente e se encontram na tela SC.

Os dois pontos luminosos são encontrados através do ajuste em um dos dois espelhos.

O ponto luminoso é ofuscado ao se introduzir as lentes fixas f=+20 mm no caminho do feixe de laser. Obten-se um ponto luminoso sem nenhuma figura de difração, ou seja , não há nem anéis de difração nem linhas.

Com um ajuste cuidadoso permitem obter círculos concêntricos .

Para medir o comprimento de onda, o parafuso do micrômetro é girado para qualquer posição inicial, para qual o centro do anél de interferência é escuro.

Fig.2 : Montagem experimental do interferômetro de Michelson.

Devido ao livre movimento do espelho, o parafuso do micrômetro é girado ainda mais na mesma direção. Ao fazer isto, conta-se os períodos dos máximos e mínimos.

O percurso do espelho pode ser contado através do micrômetro e dividido por 10 (transmissão da alavanca 1:10).

Sugestão: se o centro do anél sair fora do ponto luminoso, será necessário novo ajuste.

Teoria e Análise

Se duas ondas de mesma frequência ω e diferentes amplitudes e fase, atingem o mesmo ponto, elas irão se superpor na forma:

$$y = a_1 \operatorname{sen}(\varpi t - \alpha_1) + a_2 \operatorname{sen}(\varpi t - \alpha_2)$$

A onda resultante pode ser descrita por:

$$y = A \operatorname{sen}(\varpi t - \alpha)$$

com a amplitude $A^2 = a_1^2 + a_2^2 + 2a_1a_2\cos\delta$ (1)

e a diferença de fase $\delta = \alpha_1 - \alpha_2$

Fig.3: Formação dos anéis de interferência.

Se o espelho real M_1 for substituido por uma imagem virtual M_2 obtido através de reflexão no prato de vidro, um ponto P da fonte real de luz aparece como pontos P' e P" de fontes virtuais L_1 e L_2 .

Devido aos diferentes trajetos da luz, obtem-se a seguinte diferença de fase com as designações da Fig.3:

$$\delta = \frac{2\pi}{\lambda} 2d \cdot \cos\theta \tag{2}$$

onde λ é o comprimento de onda do laser utilizado. De acordo com (1), a distribuição de intensidade para $a_1 = a_2 = a$ é:

$$I \approx A^2 = 4 \cdot a^2 \cdot \cos^2 \frac{\delta}{2}$$
 (3)

Assim os picos ocorrem quando δ for múlktiplo de 2π , ou seja, com (2):

 $2 \cdot d \cdot \cos \theta = m \cdot \lambda \ \lambda = 1, 2, \dots$ (4)

Isto significa que anéis circulares são obtidos para valores fixos selecionados de $m \in d$, como θ permanece cosntante(c.f. Fig.3).

Se mudarmos a posição do espelho móvel M_1 , de forma que *d* diminua, de acordo com (4), o diâmetro dos anéis também diminuem, conforme m for fixado para este anél. Assim o anél irá desaparecer cada vex que *d* for diminuido de um valor de $\lambda/2$. O padrão do anél desaparece quando d=0. Se M_1 e M_2 não forem paralelos, obtem-se faixas tortas, que começam a se endireitar par d=0.

Para medir o comprimento de onda da luz, 500 mudanças de anéis foram contadas, com um desvio medido do espelho de 158 μ m. Através disto o comprimento de onda que é obtido tem o valor :

$$\lambda = 632 \text{ nm}$$

2877

Determinação do índice de refração do ar com o interferômetro de Michelson

Conceitos utilizados

Interferência, comprimento de onda, índice de refração, velocidade da luz, fontes de luz virtuais.

Princípios

A luz sofre interferência , após passar por espelhos conforme a montagem de Michelson. Mudando –se a pressão no interior de um recipiente localizado no trajeto do laser, nos permite determinar o índice de refração do ar.

Equipamentos

Prato base com pé de borracha Laser HeNe Suporte ajustável 35 x 35 mm Superfície espelhada 30 x 30 mm Pé magnético Interferômetro de Michelson (montagem da pág.26) Suporte de componentes Lentes fixadas, f=+20 mm **Recipiente para efeito Faraday** Bomba de vácuo c/ manômetro Prendedor universal com articulação Conector T, d=8 mm Peça de redução 8/4 mm 3 peças Mangueira de vácuo, d=6 mm 6 x 5,1 m mangueira de silicone d= 3mm, 1m Tela, branca 150 x 150 mm

Fig.1: Montagem experimental para determinação do índice de refração do ar com o interferômetro de Michelson (ver montagem da pág.26).

Montagem e procedimento

A montagem experiental é a mostrada na fig.1. A altura recomendada para a montagem (altura do trajeto do feixe) deve ser de aproadamente 110 mm.

O recipiente é fixado ao interferômetro e conectado à bomba de vácuo e ao manômetro. Após ajustar o trajeto do feixe pelo o espelho regulável M_1 , o espelho e o interferômetro estarão ajustados.

Para iniciar, as lentes fixadas de f= +20 mm, devem ser removidas. O feixe de laser encontra com o espelho semi transparente em um ângulo de 45° e é dividido.

Os dois feixes parciais são refletidos pelo espelho correspondente e se encontram na tela S.

Os dois pontos luminosos são encontrados através do ajuste em um dos dois espelhos.

O ajuste se mantém até que os anéis de interferência concêntricos fiquem bem visíveis no centro.

Para determinar o índice de refração, o parafuso do micrômetro é girado para a sua posição inicial, na qual o centro do anél de interferência fique escuro.

A pressão no recipiente é diminuida através da bomba manual. Conforme o centro dos anéis de interferência apresente um mínimo de intensidade, a pressão e o correspondente número de mínimos percorridos são registrados. É diminuida a pressão no sistema através da alavanca da bomba manual.

Teoria e Análise

Referente ao interferômetro de Michelson:

Se duas ondas de mesma freqüência ω e diferentes amplitudes e fases incidem sobre o mesmo local, elas se superpõem para formar

$$y = a_1 \sin(\omega t - \alpha_1) + a_2 \sin(\omega t - \alpha_2).$$

A onda resultante pode ser descrita por $y = A \sin(\omega t - \alpha)$, com a amplitude

$$A^{2} = a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos\delta$$
 (1)

e a diferença de fase

$$\delta = \alpha_1 - \alpha_2$$

Fig.3: Formação de anés de interferência.

No interferômetro de Michelson, a luz é dividida em dois feixes parciais por um prato de vidro semi-transparente (dividindo a amplitude), refletida por dois espelhos e levadas à interferir após o prato de vidro. Como apenas pontos de luz extendidos podem mostrar anéis de interferência, o feixe de luz é alargado por um sistema correspondente entre o laser e o prato de vidro.

Se um espelho real M_2 for trocado por sua imagem virtual M_2 ' obtida através da reflexão do prato de vidro, um ponto *P* da fonte de luz real aparece como pontos *P*' e *P*'' das fontes de luz virtuais L_1 e L_2 .

Devido à interferência dos caminhos dos feixes, e com as designações usadas na fig. 3, a diferença de fase é

$$\delta = \frac{2\pi}{\lambda} 2d\cos\Theta, \qquad (2)$$

onde λ é o comprimento de onda do lazer utilizado. De acordo com (1), a distribuição de intensidade para $a_1=a_2=a$ é

$$I - A^2 = 4a^2 \cos^2 \frac{\delta}{2}.$$
 (3)

Máximos ocorrem, então, quando δ é um múltiplo de 2π , ou seja, quando em (2)

$$2d\cos\Theta = m\lambda; \ m = 1, \ 2, \ \dots \tag{4}$$

que é o mesmo que dizer que encontra-se anéis para valores fixos de m e d, já que Θ permanece constante (ver fig. 3).

Se for modificada a posição do espelho móvel M_1 , de modo que ocorra, por exemplo, decréscimo em *d*, o diâmetro do anel também diminui de acordo com (4), já que *m* é fixo para este anel.

Logo um anel desaparece toda vez que *d* for decrescido de $\lambda/2$. Para *d*=0, o padrão de anel desaparece. Se M_1 e M_2 não forem paralelos, obtém-se faixas encurvadasque se tornam retas para *d*=0.

Afim de medir o *índice de refração n do ar*, um recipiente cheio de ar e com paredes planas, paralelas, é usada.

O índice de refração n de um gás depende linearmente da pressão P. Para uma pressão P=0, tem-se o vácuo absoluto, de modo que n=1.

O quociente da diferença $\Delta n / \Delta P$ é determinado como

$$\frac{\Delta n}{\Delta P} = \frac{n(P + \Delta P) - n(P)}{\Delta P}$$
(6)

onde n(P) é o índice de refração do gás na câmara. Os caminhos da onda óptica d, é

$$d = n(P)s \tag{7}$$

onde s é o comprimento geométrico do recipiente vazio. Deve-se levar em conta que a luz passa duas vezes pelo caminho, por causa da reflexão do espelho. Então, variando a pressão dentro do recipiente por ΔP , o caminho óptico é variado por Δd ,

$$\Delta d = n(P + \Delta P)s - n(P)s.$$
(8)

Observa-se uma modificação no padrão do anel com mudanças na pressão (o centro do padrão de interferência do anél alternadamente mostra máximos e mínimos). Começando com uma pressão ambiente P_0 , observa-se, quando a pressão é reduzida, N vezes a restauração da posição inicial dos padrões de interferência (ou seja, um mínimo de intensidade no centro do anel) até uma certa pressão P. Uma mudança de mínimo à mínimo corresponde à uma modificação do caminho óptico por um comprimento de onda λ . Lo

$$\Delta d = \left(N(P) - N(P + \Delta P)\right)\lambda.$$
(9)

De (8) e (9), e levando em consideração que o recipiente é atravessado duas vezes pela luz, obtem-se

$$n(P + \Delta P) - n(P) = -(N(P + \Delta P) - N(P))\frac{\lambda}{2s}$$
(10)

e, com (8),

$$\frac{\Delta n}{\Delta P} = -\frac{\Delta N}{\Delta P} \frac{\lambda}{2s}$$
. Tabela 1:

Número de *N* de mínimos encontrados com a pressão *P* correspondente. Pressão normal *P*, era de 968 hPa.

cobuo	normai	• 0	cru	uc	000	111	u

		0	
ΔN	P(hPa)	∆P(hPa)	ΔΝ/ΔΡ
1	878	110	9,091x10 ⁻³
2	768	220	9,091x10 ⁻³
3	858	332	9,036x10 ⁻³
4	540	448	8,928x10 ⁻³
5	438	550	9,091x10 ⁻³

As tabela 1 e a fig. 4 mostram um exemplo de medidas. À partir dos valores medidos com s=10 mm, é obtido como uma média para a modificação do índice de refração com mudança de pressão ($\Delta n / \Delta P$),

$$\frac{\Delta n}{\Delta P} = -\frac{\Delta N}{\Delta P} \frac{\lambda}{2s} = 2,862 \cdot 10^{-7}.$$

Quando introduzido em (5), é obtido o índice de refração n=1,00282. O valor dado pela literatura para pressão normal (P=1013 hPa), temperatura de 22°C e comprimento de onda $\lambda=632,8$ mm, é n = 1,000269.

Dica: Em condições adequadas, até 8 mudanças ΔN podem ser medidas de mínimo à mínimo.

7H7/WE

Determinação do índice de refração do CO₂ com o interferômetro de Michelson

Conceitos utilizados

Interferência, comprimento de onda, índice de refração, velocidade da luz, fonte de luz virtual.

Princípios

A luz sofre interferência , após passar por espelhos conforme a montagem de Michelson. Mudando a pressão no interior de um recipiente de medida localizado no trajeto do laser, permite a determinação do índice de refração do ar.

Equipamentos

Prato base com pé de borracha Laser HeNe Suporte ajustável 35 x 35 mm Superfície espelhada 30 x 30 mm Pé magnético Interferômetro de Michelson (ver montagem da pág.26)

Tela, branca 150 x 150 mm Recipiente para efeito Faraday Mangueira de Silicone, d=5 mm, 5 x 1, 1m Grampo universal com articulação Suporte de componentes Suporte com lentes, f=+20 mm

Fig.1: Montagem experimental para determinação do indice de refração do CO₂ através do interferômetro de Michelson (*necessário apenas para laser de 5 mW)

Montagem e procedimento

A montagem experimental é mostrada na fig. 1. A altura recomendada para a montagem (altura do trajeto do feixe) deve ser de aproadamente 130 mm.

O recipiente é preso ao interferômetro de Michelson e uma peça conectora é fechada utilizando uma rolha de Teflon.

Após ajustar o trajeto do feixe ajustando o espelho **M**, o feixe é alargado pelas lentes, f=+20 mm.

Após isso, ambos os espelhos do interferômetro são ajustados.

O feixe las er incide no espelho semi-transparente em um ângulo de 45° e é dividido.

Ambos os feixes parciais são refletidos pelos espelhos correspondentes e incidem no anteparo **S**.

Os dois pontos de luz são superpostos através da utilização dos dois parafusos de ajuste de um dos dois espelhos. O ajuste é feito até que os círculos de interferência concêntrica estejam claramente visíveis no centro.

Para determinar o índice de refração, o micrômetro-parafuso é ajustado para uma posição inicial onde os círculos de interferência apareçam estar escuros.

A garrafa pressurizada de dióxido de carbono é conectada à pipeta de vidro pela válvula e uma mangueira de silicone. A pipeta de vidro é orientada através do grampo universal ajustado em um pé magnético de tal modo que a ponta aponta para a parte não fechada do recipiente.

A pressão no recipiente é diminuída com a bomba manual. Assim que o centro dos círculos de interferência mostrar um mínimo de intensidade, a pressão e a quantidade correspondente de mínimos passando são registradas.

Fig.2: Montagem de Michelson para Interferência.

A válvula de gás é aberta de tal maneira que o gás flua lentamente. Observase mudanças entre máximos e mínimos do anel de interferência. Tais mudanças param após certo tempo quando o recipiente é completamente preenchido com CO_2 .

Teoria e Análise

Referente ao interferômetro de Michelson:

Se duas ondas de mesma freqüência ω e diferentes amplitudes e fases incidem sobre o mesmo local, elas se superpõem para formar

$$y = a_1 \sin(\omega t - \alpha_1) + a_2 \sin(\omega t - \alpha_2).$$

A onda resultante pode ser descrita por

$$y = A\sin(\omega t - \alpha),$$

com a amplitude

$$A^{2} = a_{1}^{2} + a_{2}^{2} + 2a_{1}a_{2}\cos\delta$$
 (1)

e a diferença de fase

 $\delta = \alpha_1 - \alpha_2.$

um prato de vidro semi-transparente (dividindo a amplitude), refletida por dois espelhos e levadas à interferir após o prato de vidro. Como apenas pontos de luz extendidos podem mostrar anéis de interferência, o feixe de luz é alargado por um sistema correspondente entre o laser e o prato de vidro.

Se um espelho real M_2 for trocado por sua imagem virtual M_2 ' obtida através da reflexão do prato de vidro, um ponto *P* da fonte de luz real aparece como pontos *P*' e *P*'' das fontes de luz virtuais L_1 e L_2 .

Devido à interferência dos caminhos dos feixes, e com as designações usadas na fig. 3, a diferença de fase é

$$\delta = \frac{2\pi}{\lambda} 2d\cos\Theta, \qquad (2)$$

onde λ é o comprimento de onda do lazer utilizado. De acordo com (1), a distribuição de intensidade para $a_1=a_2=a$ é

$$I - A^2 = 4a^2 \cos^2 \frac{\delta}{2}.$$
 (3)

Máximos ocorrem, então, quando δ é um múltiplo de 2π , ou seja, quando em (2) $2d \cos \Theta = m\lambda$; m = 1, 2, ... (4)

que é o mesmo que dizer que encontra-se anéis para valores fixos de m e d, já que Θ permanece constante (ver fig. 3).

Se for modificada a posição do espelho móvel M_1 , de modo que ocorra, por exemplo, decréscimo em d, o diâmetro do anel também diminui de acordo com (4), já que *m* é fixo para este anel.

Logo um anel desaparece toda vez que *d* for decrescido de $\lambda/2$. Para *d*=0, o padrão de anel desaparece. Se M_1 e M_2 não forem paralelos, obtém-se faixas encurvadasque se tornam retas para *d*=0.

Para medir o índice de refração do CO_2 , um recipiente previamente resfriado com ar e com paredes paralelas e planas é utilizado. Este recipiente é introduzido na trajetória do feixe entre o sistema de separação do feixe e um espelho. Como os índices de refração do ar e do CO_2 são diferentes, o índice de refração no recipiente é proporcional à quantidade de CO_2 introduzido.

O comprimento r da trajetória óptica do recipiente de comprimento geométrico l é então diferente para o ar e para o dióxido de carbono.

Como o feixe de luz atravessa duas vezes o recipiente, o comprimento geométrico da trajetória óptica é s=2l. Isso resulta em:

 $r_1 = n_1 s$, para ar com índice de refração n_1 ;

 $r_2 = n_{21}s$, para dióxido de carbono com índice de refração n_2 .

2874

(5) (6)

$$r_2 = r_1 + \Delta r ,$$

 $n_2 = n_1 + \Delta n$

e de (5) e (6) segue que

$$\Delta r = s \Delta n . \tag{7}$$

Do experimento 4.2, sabe-se que quando o índice de refração é diminuído, os anéis de interferência aumentam de dentro para fora. Assim, a direção do movimento dos anéis permite que se determine se o índice de refração do gás examinado é maior ou menos que o do ar.

Quando medido com CO_2 , o índice de refração é maior que o do ar, pois os anéis correm pra dentro quando o recipiente está cheio de CO_2 .

Uma medida mostrou que 9 mudanças entre máximos e mínimos podem ser observadas. Isso corresponde a uma modificação na trajetória óptica de $\Delta r=4,5\lambda$. ($\lambda=632,8$ nm). O comprimento geométrico *s* do recipiente é 12 mm para as dimensões exteriores (o comprimento da coluna de CO₂ é 10 mm). De acordo com (7) obtém-se

$$\Delta n = 1,4238 \cdot 10^{-4}$$
.

Com o valor da literatura para o índice de refração do ar em temperatura normal e 20°C de $n_1=1,000272(2)$, obtém-se um índice de refração para o CO_2 de

$$n_2 = 1,000414(4)$$
.

O valor de literatura dado para o índice de refração do CO_2 em pressão normal e temperatura de 20°C é

$$n_2(Lit.) = 1,000416$$
.

Fig.3: Formação de anéis de interferência.

Lei de Lambert da Radiação

Tópicos relacionados

Irradiância específica, densidade do feixe, emissão difusa e reflexão.

Fundamentos e objetivos

A reflexão difusa de uma folha de papel, é examinada de acordo com a lei de Lambert da radiação em relação a emissão característica da radiação.

Equipamentos

Base prato com pés de borracha Laser HeNe Suporte ajustável 35 x 35 mm Superfície espelhada 30 x 30 mm Pé magnético Prendedor de componentes Lentes montadas, f = +150 mm Suporte para diafragma Trilho Guia rotatório magnético Cabo de conexão vermelho, l=500mm Fotômetro Folha de papel

Fig.1: Montagem experimental para verificação qualitativa da lei de Lambert (* necessário apenas para laser de 5 mW).

Montagem e procedimento

- A montagem experimetal está mostrada na Fig.1. A altura recomendada para montagem (altura do caminho do feixe) é de 110 mm.
- A folha de papel deve ser colocada no suporte de diafragma.
- O feixe de laser é ajustado com o espelho M_1 , M_2 de forma a atingír perpendicularmente a superfície do papel e o eixo de rotação do trilho guia giratório.
- À intensidade de luz é medida em função do ângulo através de uma fotocélula no trilho guia giratório.
- O menor ângulo ajustável φ que pode estar compreendido entre a perpendicular à superfície do papel (ou seja, a direção de incidência do feixede laser) e a direão do detector (cf. fig.2) 15°.
- Após o laser ser aquecido por meia hora, o experimento pode ser feito em uma sala escura, para que a intensidade de luz seja constante.
- No início das medidas, a amplificação adequada é feita no amplificador universal de medidas (a tensão não deve ser maior do que a tensão máxima de saída 10V).

Fig.2: Diagrama dos fundamentos das medidas com a magnitude utilizadas (com 0^* sendo a magnitude aparente da superfície 0)

- Interrompe-se o feixe de laser para ajuste do zero no amplificador universal de medidas.
- Ângulo φ é ajustado entre 15° e 80° em passos de 5° com o auxílio do guide rail giratório e a escala angular. As intensidades correspondentes (ou respectivas tensões U(φ) são medidas
- Para melhor precsião o experimento deve ser repetido várias vezes nas mesmas condições e as tensões devem ser médias.

Montagem da unidade giratória: para iniciar, o parafuso de trava do pé magnético deve ser removido. O orifício circular do trilho guia giratório é empurrado sobre o pé magnético. Com isso a escala angular é ajustada sobre o pé magnético, acima do trilho guia giratório. O pé magnético é então preso na base optica, o trilho guia fica então com mobilidade suficiente. Uma fotocélula LD é então colocada no centro do triho guia giratório através de um pé magnético. A distribuição angular deve ser sensível quando a montagem for feita na base prato, ou seja, a linha de 0° da escala deve estar apontando para a direção do feixe de laser.

Fig.3: Gráfico para confirmação da lei de Lambert. A Tensão $U(\phi)$ foi normalizada com o valor $U(15^{\circ})$ e $\cos(\phi)$ com $\cos(15^{\circ})$.

Teoria e análise

A emissão característica de uma superfície difusa e refletora O, é determinada pelo fato de que cada elemento de superfície dO espalha luz incidente uniformemente em todas as direções. Este é o caso, de uma folha de papel que consiste de um número grande de estreitas fibras de celulose transparentes.

Como a densidade do feixe L de uma superfície refletora e difusa é constante, para o onbservador, a superfície total O aparece tendo a mesma luminosidade independente da direção de observação. Na fig.2, pode ser visto que a superfície aparente que é vista pelo observador, varia com o ângulo de observação φ . No caso de $\varphi = 90^{\circ}$ a superfície aparente desaparece e assim a irradiação E continua para o observador

Como a fotocélula LD, apenas pode "ver" um ângulo pequeno com seu pequeno orifício, e como a área de recepção continua constante e na mesma distância perpendicular a direção de observação durante todas a medidas , influencias devido a superfície de recepção devem ser desprezadas neste caso

(a intensidade de radiação E da fotocélula é proporcional a intensidade I do feixe da superfície refletora). Em geral a lei de Lambert dos cossenos é válida para as superfícies refletoras:

 $I = L \cos \varphi$. O (1) Onde I é a intensidade do feixe e L a densidade do feixe (constante) Nestas circunstâncias, obtên-se as seguintes relações de proporcionalidade

 $E(\phi) \sim \cos\phi$ (2)

A intensidade de irradiação E é proporcional a tensão medida U da fotocélula (cf. tabela.1).

As seguintes relações são utilizadas para análise:

O menor ângulo de ajuste φ é de 15°. De acordo com a equação 2, o menor ângulo e um ângulo qualquer estão relacionados pelo fato de que E (15°) ~cos(15°) e E(φ) ~cos φ . Isto leva a

$$\frac{E(\varphi)}{E(15^0)} = \frac{\cos(\varphi)}{\cos 15^0} \tag{3}$$

Quando colocadas no gráfico

$$\frac{E(\varphi)}{E(15^{\circ})}ou\frac{U(\varphi)}{U(15^{\circ})}$$
para $\frac{\cos(\varphi)}{\cos 15^{\circ}}$

Deve-se obter uma linha reta de coeficiente angular 1(Fig.3).

O gráfico motra que isto é verdadeiro para as áreas mais largas. Mostra também que a intensidade luminosa é altíssima para ângulos pequenos. Nesta área recebe-se uma proporção refletida direta que não é radiada difusamente. Isto mostra que folhas macias não são bons radiadores de Lambert.

U(φ)/Volt	2,75	2,58	2,43	2,30	2,10	1,80	1,65	1,47	1,33	1,05	0,88	0,62	0,62	0,33	0,12
φ/graus	15	20	25	30	35	40	45	50	55	60	65	70	75	75	80

Interferômetro de Twyman - Green

Topicos relacionados

Interferômetro de Michelson, interferência, indice de refração, velocidade da luz, fase.

Fundamentos e tarefas

Luz paralela é posta em interferência com um interferômetro de Michelson. Se um elemento optico é posto no caminho do feixe, pode se analisar várias falhas no elemento, qualitativamente utlizando as distorções nos padrões de interferência.

Equipamentos

Base prato com pés de borracha Laser He Ne, 1 mW Suporte ajustável, 35 x 35 mm Superfície espelhada, 30 x 30 mm Base magnética Prendedor prato Divisor de feixe, 50;50 Placa de vidro Lentes com montagen, f = +20 mm Lentes com montagem, f = +50 mm Lentes com montagem, f = +50 mm Prendedor de lentes para base prato Tela, branca, 150 x 150 mm Prendedor de diafragma, ajustável

Objetivos

- Montagem de um Interferômetro de Twyman- Green utilizando componentes ópticos separados.
- Assessment qualitativo dos elementos ópticos que estão sendo irradiados com feixe de luz paralela pela observação dospadrões de interferência na tela.

Montagem e procedimento

A seguir, os pares de números nos parênteses referem-se a coordenadas na base de prato optica de acordo com a Fig.1. Estas coordenadas são apenas um exemplo guia grosseiro. Para fazer a montagem experimental de acordo com a Fig.1, a altura recomendada da montagem (altura do feixe de luz) é de 130 mm.

- As lentes $L_1 f = +5 \text{ mm} (1,6)$, L_2 , $f = +50 \text{ mm} (1,5) \text{ e} L_3$, f = 50 mm (7,5) e o pane de vidro GI (9,4) não deve estar na posição, quando for fazer os ajuste inicias.
- Quando ajustar o caminho do feixe com o espelho ajustável M_1 (1,8) e M_2 (1,4), o feixe estará alinhado com a quarta coordenada y da base prato.

Fig.1: Montagem experimental do Interferômetro de Twyman-Green (*necessário apenas para laser de 5 mW)

- Ajuste o espelho M_3 (10,4) inicialmente sem o divisor de feixe BS (7,4) de forma que os feixe refletido atinja no mesmo ponto o espelho M_2 de onde ele inicialmente se originou.
- Agora, coloque o divisor de feixe BS com sua parte metálica na frente do espelho M_2 no caminho do feixe a (7,4) de maneira que um feixe parcial seja incidente no espelho M_3 sem ser mudado e o outro feixe parcial atinja o espelho M_4 (7,1) perpendicularmente ao longo da 7° coordenada x da base prato.
- Um melhor resultado pode ser otido se o comprimento dos caminhos entre os espelhos M_3 e BS e M_4 e o divisor de feixe estiverem equidistantes.

- O feixe que é refletido pelo espelho M_4 deve ser ajustado agora com o parafuso de ajustes de forma que atinja o mesmo ponto na tela SC (7,7) conforme o feixe parcial originando no espelho M_3 e refletido pelo divisor de feixe BS.
- Uma leve piscadela dos pontos luminosos indicam o ajuste exato.
- Posicione agora a lente L_2 , f = +50 mm (1,5) no caminho do feixe. Um padrão de interferência tênue e expandido, como é típico no interferõmetro de Michelson, será observado.
- Através de adição e ajustes apropriados das posições da lente L_1 , f = +5 mm (1,6) um ponto luminoso que é de aproximadamente $\frac{1}{2}$ polegada de tamanho torna-se visivel. Deve ter o mesmo diâmetro em todas as posições da montagem " atrás das lentes" isto pode ser verificado com uma folha de papel. Assim, a interferencia das ondas luminosas são aproximadamente planas.
- Para uma observação mais exata, posicione a lente L_3 . Através de reajustes nos espelhos $M_3 \ e \ M_4$ o "centro" de interferência pode ser trazido para o campo visual.
- Agora coloque a placa de vidro GL (9,4) na posição. Posicione-a na mesa com um bastão, que esteje fixado na base magnética. Um padrão em linha é obtido ao invés de uma superfície relativamente iluminada uniformemente.

Fig.2: Configurações diferentes do interferômetro de Twyman-Green para medidas de elementos ópticos variaveis.

Teoria e análise

A teoria do interferômetro de Michelson e interferência foi explicada adequadamente na experiência correspondente (e.g. LP5).

Contudo, apenas a teoria do interferômetro de Twyman-Green que é baseada na parte que diz respeito ao interferômetro, será considerada.

Em optica o interferômetro de Twynamn-Green é uma das ferramentas de testes mais efetiva para elementos ópticos. Seu campo de aplicação preferido se concentra em testes de lentes para falhas em superfícies . Para tanto, uma lente é normalmente posicionada entre o divisor de feixe e um espelho (Fig.2); o plano do espelho é então substituido por um espelho convexo cujo centro coincide exatamente com o ponto focal das lentes. A onda plana que é incidente à lente, atinge o espelho como uma onda esférica e é também refletida de volta como uma onda esférica. Esta montagem é contudo possível apenas se uma tiver um espelho ópticamente esférico de alta qualidade. O experimento descrito aqui é uma variação para teste de meio ópticos planos, por exemplo pratos de vidros ou prismas (veja Fig.2).

Os desvios no padrão de interferência, visíveis na tela, são causados por irregularidades microscópicas do corpo optico inserido na trajetória do feixe. Uma irregularidade que tem uma altura igual a n-ésima parte do comprimento de onda utilizado em relação ao plano do corpo, isto causa uma desvio na fase pela mencionada n-ésima parte de λ . Este desvio na fase é então visível na tela como uma mudança na espessura das franjas de interferência.