

1310 - O Efeito Zeeman

Roteiro elaborado com base na documentação que acompanha o conjunto por: *Ricardo Barthem* - Instituto de Física - UFRJ

Tópicos Relacionados

Modelo atômico de Bohr, quantização dos níveis de energia, spin eletrônico, magneton de Bohr, interferência de ondas eletromagnéticas, interferômetro de Fabry-Perot.

Princípio e Objetivo

O "efeito Zeeman" é o desdobramento das linhas centrais espectrais de átomos com um campo magnético. O caso mais simples é o desdobramento de uma linha espectral em três componentes, então denominado "efeito Zeeman normal". Este caso será analisado através do uso de uma lâmpada espectral de cádmio espectral. A lâmpada de cádmio é submetida a diferentes intensidades de fluxo magnético e estuda-se o desdobramento da linha no vermelho do cádmio (λ =643,8 nm) com o uso de um interferômetro Fabry-Perot. A análise dos resultados conduz a um valor bastante preciso para o magneton de Bohr.

Equipamento

2077.00	1
211.00	1
480.01	1
6480.03	1
134.00	1
'361.01	2
'361.04	2
012.00	4
8020.01	2
8023.01	1
8045.00	1
8082.03	1
256.00	1
	077.00 211.00 480.01 480.03 134.00 361.01 361.04 012.00 020.01 023.01 045.00 082.03 256.00

Trilho de banco óptico, ℓ 1000 mm	08282.00	1
Base para banco de perfil óptico, ajustável	08284.00	2
Suporte deslizante p. banco óptico,h 30mm	08286.01	5
Suporte deslizante p. banco óptico,h 80mm	08286.02	1
Suporte de placa c/ mola de tensão	08288.00	1
Tela, com abertura e escala	08340.00	1
Filtro polarizador	08610.00	1
Amostra para polarização, quartzo	08668.00	1
Lâmpada de Cádmio para Efeito Zeeman	09050.01	1
Interferômetro de Fabry-Perot	09050.02	1
Transformador 25VAC/20VDC,12A	13531.98	1
Fonte de aliment. p/ lâmpada espectral	13662.98	1

Fig.1: Montagem experimental para o efeito Zeeman. A intensidade do campo magnético pode ser obtida pela curva de calibração das bobinas, ou usando o gaussímetro ilustrado, que deve ser adquirido separadamente.

Objetivos

- 1. Usando o interferômetro Fabry-Perot e um telescópio montado no próprio trilho para montagens ópticas, mede-se em número de onda o desdobramento da linha central em duas linhas com função da intensidade do fluxo magnético.
- 2. Do resultado do item 1 obtém-se o valor para o magneton de Bohr.
- 3. A luz emitida na direção do campo magnético é analisada qualitativamente.

Procedimento

O eletromagneto é montado sobre uma mesa girante com os pólos expansores de tal forma que fiquem uma separados de 9 mm da lâmpada de Cd. Os pólos expansores devem ser bem fixados de tal forma que eles não possam se mover mais tarde quando o fluxo magnético for estabelecido. A lâmpada de Cd é inserida no interior do eletromagneto, sem tocar os pólos, e conectada à fonte de alimentação para lâmpadas espectrais. As bobinas do eletromagneto são conectadas em paralelo e, via um amperímetro conectada à fonte de alimentação variável a até 20 VDC, 12 A. Um capacitor de 22000 µF fica em paralelo à saída da alimentação de forma a suavizar a voltagem DC.

A montagem óptica para análise do desdobramento de linhas contém os seguintes elementos (suas posições aproximadas em cm são dadas entre parênteses):

Fig. 2: Arranjo dos componentes ópticos.

O diafragma em íris é eliminado nos ajustes iniciais e para a observação do efeito Zeeman longitudinal. Durante a observação do efeito Zeeman transversal o diafragma em íris é iluminado pela lâmpada de Cd e assume o papel da própria fonte de luz. A lente L_1 e uma lente de f = 100 mm, incorporada no interferômetro, cria um feixe de luz quase paralelo necessário para o interferômetro Fabry-Perot produzir o padrão de interferência. O interferômetro contém um filtro colorido removível o qual separa a linha vermelha do cádmio de 643,8 nm. A lente L_2 produz um padrão de interferência de anéis no plano da tela com escala montada em um suporte de diapositivos o qual pode ser deslocado lateralmente com uma precisão de 1/100 do milímetro.

O sistema de anéis é observado através L_3 e os diâmetros anelares podem ser medidos, por exemplo, através de um deslocamento sistemático da marca representando o "0" da escala. As leituras devem ser realizadas em uma sala completamente escura usando um jato de luz. O ajuste inicial é feito da seguinte maneira: A mesa giratória com o

electromagneto, pólos expansores e lâmpada de Cd, já montados, é elevada até uma altura de cerca de 16 cm acima da mesa usando os blocos de suporte. Por meio de uma bolha de nível, o eletromagneto é ajustado perfeitamente na horizontal. O banco óptico é montado com todos os elementos (com exceção do diafragma em íris). Em seguida, é levado para perto do eletromagneto de tal forma que o orifício de um dos pólos expansores coincida com a posição prévia do diafragma em íris. A lente L₁ é, então, ajustada de tal forma que o orifício de saída esteja no seu foco. Todos os demais elementos ópticos da Fig. 2. são subseqüentemente reajustados com relação a suas alturas respectivas.

A corrente das espiras é elevada **suavemente** até 8 A. enquanto isso o anel de interferência na direção axial é observado através de L₃. A figura deve estar centrada e fina, o que pode ser atingido por um final movimento leve do interferômetro (para a direita ou para a esquerda) e por um deslocamento de L₂ (verticalmente e horizontalmente). Finalmente a tela com escala é deslocada de forma a que a marca correspondente ao "0" da escala seja observado coincidir, por exemplo, com o centro do tênue anel interno. A escala, ela mesma, deve ser capaz de ser movida horizontalmente ao longo do diâmetro do anel de interferência. O eletromagneto é, em seguida, rodado de 90°, O diafragma em íris inserido e o analisador rodado até que a linha p (explicação à seguir) desapareça completamente e as duas linhas s apareçam claramente.

Observação: Para uma análise posterior, a curva de calibração da densidade de fluxo magnético contra a corrente nas espiras deve ser traçada previamente. Isto pode ser feito se estiver disponível um teslâmetro. Caso contrário, os resultados da Fig. 3 deverão ser usados. A curva da Fig. 3 foi traçada medindo-se a densidade de fluxo no centro do espaçamento dos pólos expansores na ausência da lâmpada de Cd. Para as análises estes valores centrais devem ser aumentados de 3.5% de forma a levar em conta a não uniformidade da distribuição da densidade de fluxo neste espaço

Fig. 3: Densidade de fluxo magnético B no centro do espaço sem a lâmpada de Cd (largura: 9 mm) em função da corrente na espira.

Teoria e análise

No início de 1862, Faraday investigava se o espetro de chamas coloridas se modificavam devido ao efeito de um campo magnético, mas sem sucesso. Foi somente em 1885 que o belga Fievez foi capaz de demonstrar um efeito, mas ele foi esquecido e somente redescoberto 11 anos depois pelo holandês Zeeman, o qual o estudou sob a orientação de Lorentz.

Este experimento, o qual foi de importância para o desenvolvimento da teoria das camadas atômicas, pode agora ser realizado com equipamentos modernos em um laboratório experimental de ensino.

O desdobramento da linha espectral λ = 643,8 nm do Cd em três linhas, o então chamado tripleto de Lorentz, ocorre porque o átomo de Cd representa um sistema singleto de spin total S = 0. Na ausência de campo magnético há somente uma única transição D \rightarrow P possível de 643,8 nm, como indicada pela Fig. 4.

Na presença de um campo magnético os níveis de energia associados desdobram-se em 2L + 1 componentes. As transições radiativas entre estes componentes são possíveis, desde que as regras de seleção

$\Delta M_L = +1$; $\Delta M_L = 0$; $\Delta M_L = -1$

sejam obedecidas. Neste caso, contudo, há um total de nove transições permitidas, sendo que elas apresentam apenas três energias distintas produzindo apenas três linhas espectrais. Cada uma delas corresponde a três transições de mesma energia, e portanto, de mesmo comprimento de onda.

O primeiro grupo onde $\Delta M_L = -1$ dá origem a uma linha σ cuja luz é polarizada perpendicularmente ao campo magnético. O grupo intermediário $\Delta M_L = 0$ fornece uma linha π de luz polarizada paralelamente à direção do campo. O último grupo, para o qual $\Delta M_L = +1$, produz uma linha σ de luz novamente polarizada perpendicularmente ao campo magnético.

Fig. 4: Desdobramento das componentes pelo campo magnético e as transições permitidas.

Na ausência do analisador todas as três linhas podem ser vistas simultaneamente. Cada um dos anéis observados na ausência de um campo magnético é desdobrado em três ao ser aplicado um campo magnético. Com a inserção do analisador as duas linhas σ só podem ser observadas se o ele estiver na posição vertical. Para se observar a linha π o analisador deve ser girado até ficar na horizontal (efeito Zeeman transverso). Rodando o eletromagneto de 90° pode-se estudar a luz emitida pela lâmpada espectral na direção paralela à do campo magnético, já que os pólos extensores são vazados. Pode ser demonstrado que esta luz é circularmente polarizada. Qualquer que seja a posição do analisador, cada um dos anéis vistos na ausência do campo magnético fica desdobrado permanentemente em dois anéis na presença de um campo magnético (efeito Zeeman longitudinal). A Fig. 5 resume estes casos.

Fig. 5: O efeito Zeeman longitudinal e transversal.

O interferômetro Fabry-Perot tem uma resolução de aproximadamente de 1/300000. Isto significa que uma variação no comprimento de onda de aproximadamente 0,002 nm pode ser detectada. O interferômetro consiste de duas placas de vidro finan paralelas cujas superfícies internas foram revestidas com uma camada metálica parcialmente transmissora. A Fig.6 esquematiza as duas superfícies parcialmente transmissoras (1) e (2) separadas por uma distância t. Um raio incidente fazendo um ângulo θ com a normal às placas será desdobrado nos raios AB, CD, EF, etc... A diferença de percurso entre as frentes de onda de dois raios adjacentes (por exemplo, AB e CD) é

d = BC + CK

onde, obviamente, BK é normal a CD. Com

 $CK = BC \cos 2\theta \in BC \cos \theta = t$

obtemos

d = BCK = BC (1 + $\cos 2\theta$) = 2 BC $\cos^2 \theta$ = 2 t $\cos \theta$

e para ocorrer uma interferência construtiva

$n\lambda = 2 t \cos \theta$

onde n é um inteiro. Se o índice de refração do meio entre as placas for $\mu \neq 1$, a equação deve ser modificada da seguinte maneira:

 $n\lambda = 2 \mu t \cos \theta$

Fig. 6: Raios transmitidos e refletidos pelas superfícies paralelas (1) e (2). O espaçamento entre as placas é t. Girando o eletromagneto de volta para a observação das duas linhas σ do efeito Zeeman transversal é fácil observar que o intensidade do desdobramento aumenta com o valor do campo magnético. Para uma medida quantitativa deste desdobramento em termos de número de ondas, usa-se um interferômetro Fabry-Perot. O funcionamento pode ser explicado sucintamente.

A equação (1) é a equação básica do interferômetro. Sejam os raios paralelos B, D, F, etc. desviados para um foco através do uso de uma lente de distância focal f como mostrado na Fig. 7.

Fig. 7: Focalização da luz emergente do interferômetro Fabry-Perot.

A luz incidindo sobre o separador sob um ângulo θ é focalizada em um anel de raio r = f. θ onde f é a distância focal da lente. Então, quando θ satisfaz a equação (1), anéis brilhantes aparecem no plano focal cujos raios são dados por

 $r_n = f.tg \ \theta_n \ . \cong f.\theta_n$

para pequenos valores de θ_n , o que é válido para raios quase paralelos ao eixo óptico. Como

$$n = \frac{2\mu t}{\lambda} \cos \theta_n = n_0 \cos \theta_0 = n_0 \left(1 - 2 \sin^2 \frac{\theta_n}{2} \right)$$

com

$$n_0 = \frac{2\mu t}{\lambda}$$

obtemos finalmente

$$n = n_0 \left(1 - \frac{\theta_n^2}{2} \right)$$
ou
$$\theta_n = \sqrt{\frac{2(n_0 - n)}{n_0}}.$$
(3)

Se o ângulo θ_n corresponde a uma franja brilhante, n precisa ser um inteiro. Contudo, n_o , o qual corresponde à interferência no centro (cos θ = 1 ou θ = 0 na equação [1]), em geral não é um inteiro. Se n_1 é a ordem de interferência do primeiro anel, temos que $n_1 < n_o$ visto que $n_1 = n_o \cos \theta_{n_1}$. Temos então

$$n_1 = n_0 - \ll ; 0 < \ll < 1$$

onde n1 é o maior inteiro inferior a no. Logo, para o p-ésimo anel da figura, contado a partir do centro,

 $n_{p} = (n_{o} - \alpha) - (p - 1)$ (4)

Combinando a equação (4) com as (2) e (3), obtemos para os raios dos anéis, após a substituição de r_p por r_{np},

$$r_{p} = \sqrt{\frac{2f^{2}}{n_{o}}} \cdot \sqrt{(p-1) + \varepsilon}$$
(5)

Podemos observar que a diferença entre os quadrados dos raios de anéis adjacentes é constante:

$$r_{p+1}^2 - r_p^2 = \frac{2f^2}{n_0}$$
(6)

 ϵ pode ser determinado graficamente em um gráfico de r²_p contra p e extrapolando para r²_p = 0.

Agora, se houver duas componentes de uma linha espectral (desdobramento de uma linha central em duas componentes) com comprimentos de onda $\lambda_a e \lambda_b$, os quais são muito próximos um do outro, eles terão ordens fracionárias no centro de $\epsilon_a e \epsilon_b$:

$$\varepsilon_{a} = \frac{2\mu t}{\lambda_{a}} - n_{1,a} = 2\mu t \overline{\nu_{a}} - n_{1,a}$$
$$\varepsilon_{b} = \frac{2\mu t}{\lambda b} - n_{1,b} = 2\mu t \overline{\nu_{b}} - n_{1,b}$$

onde $n_{1,a}$, $n_{1,b}$ é a ordem de interferência do primeiro anel. Assim, se os anéis não se superpõem por uma ordem completa $n_{1,a} = n_{1,b}$, a diferença em número de ondas entre as duas componentes é simplificada em

$$\Delta v = \overline{v_a} - \overline{v_b} = \frac{\varepsilon_a - \varepsilon_b}{2\mu t} \,. \tag{7}$$

Além disso, usando as equações (5) e (6), temos

$$\frac{r_{p+1}^2}{r_{p+1}^2 - r_p^2} - p = \varepsilon$$
(8)

Aplicando a equação (8) para as componentes a e b, obtemos

$$\frac{r_{p+1,a}^2}{r_{p+1,a}^2 - r_{p,a}^2} - p = \epsilon_a$$

e
$$\frac{r_{p+1,b}^2}{r_{p+1,b}^2 - r_{p,b}^2} - p = \varepsilon_b$$

Substituindo estas ordens fracionárias na equação (7), obtemos para a diferença dos números de onda:

$$\Delta \nu = \frac{1}{2\mu t} \left(\frac{r_{p+1,a}^2}{r_{p+1,a}^2 - r_{p,a}^2} - \frac{r_{p+1,b}^2}{r_{p+1,b}^2 - r_{p,b}^2} \right)$$

Da equação (6) fica claro que a diferença entre os quadrados dos raios de componente a,

$$\Delta_a^{p+1,p} = r_{p+1,a}^2 - r_{p,a}^2 = \frac{2f^2}{n_{0,a}}$$

é igual à (dentro de uma aproximação bem pequena) mesma diferença para a componente b

$$\Delta_{b}^{p+1,p} = r_{p+1,b}^{2} - r_{p,b}^{2} = \frac{2f^{2}}{n_{0,b}}$$

Assim,

$$\Delta_a^{p+1,p} = \Delta_a^{p+1,p}$$

qualquer que seja o valor de p. Da mesma forma, todos os valores

$$\delta^{p+1,p}_{a,b} = r^2_{p+1,a} - r^2_{p+1,b}$$

devem ser iguais, independentemente de p e suas médias podem ser tiradas da mesma forma que para os diferentes valores de Δ . Com δ e Δ como valores médios, tomamos para a diferença dos números de onda das componentes a e b, com μ = 1,

$$\Delta \overline{v} = \frac{1}{2t} \frac{\delta}{\Delta}$$
(10)

A equação (10)^{*} evidencia o fato de que Δv não depende das dimensões usadas na medida dos raios do sistema de anéis nem da amplificação dos padrões de interferência.

1. Tendo sido estabelecido o padrão de anéis como descrito acima, a marca "0" da escale é deslocada horizontalmente ao longo do diâmetro do anel até que coincida, por exemplo, com a borda esquerda do quarto anel. Um campo magnético correspondendo a uma corrente nas espiras de 4 A é estabelecido e o desdobramento dos anéis é observado. O analisador é colocado na posição vertical de maneira que somente as duas linhas σ apareçam. A marca "0" é agora posicionada a coincidir com o mais externo dos dois anéis, nos quais o quarto anel se desdobrou. É feita a primeira leitura na base da montagem. A marca "0" é então movida da esquerda para a direita através de todos os anéis. A última leitura é feita quando a marca "0" coincidir com o lado direito do anel externo do quarto anel desdobrado. A última leitura menos a primeira, dividido por dois então fornece o raio r_{4,b}. Obtendo as leitura prévias de forma similar chegamos aos seguintes raios:

 $\mathsf{I}=\mathsf{4}\;[\mathsf{A}]:\,\mathsf{r}_{4,b}\;;\,\mathsf{r}_{4,a}\;;\,\mathsf{r}_{3,b}\;;\,\mathsf{r}_{3,a}\;;\,\mathsf{r}_{2,b}\;;\,\mathsf{r}_{2,a}\;;\,\mathsf{r}_{1,b}\;;\,\mathsf{r}_{1,a}$

Conjuntos adicionais de raios são obtidos ao se repetir o procedimento, por exemplo, para uma corrente nas espiras de 5 A, 6 A, 8 A e 10 A. Usando a montagem deslizante, todas as leituras são feitas em "mm" com uma precisão de 0,01 mm. Lembrando que a dimensão usada não importa pois ela se cancela no cálculo de Δv vista a equação (10).

Para cada conjunto de raios os seguintes arranjos de quadrados podem ser formados:

componente	número do anel			
	1	2	3	4
а	$r_{1,a}^2 \Delta_a^{2,1}$	$r_{2,a}^2 \Delta_a^{3,2}$	$r_{3,a}^2 \Delta_a^{4,3}$	r _{4,a}
	$\delta^1_{a.b}$	$\delta^2_{a.b}$	$\delta^3_{a.b}$	$\delta^4_{a.b}$
b	$r_{1,b}^2 \Delta_b^{2,1}$	$r_{2,b}^2 \Delta_b^{3,2}$	$r_{3,b}^2 \Delta_b^{4,3}$	r _{4,b}

^{*} Milissinow, Adv. Exp. in Modern Physics

(9)

Os valores médios de Δ e δ são calculados aqui da seguinte maneira:

$$\begin{split} \Delta &= \frac{1}{4}\sum_{p=1}^{2} \left(\! \Delta_a^{2p,2p-1} + \Delta_b^{2p,2p\cdot} \right. \\ \delta &= \frac{1}{4}\sum_{p=1}^{4} \delta_{a,b}^p \end{split}$$

2

O espaço no interferômetro é t = 3×10^{-3} m.

A equação (10) foi usada para calcular a diferença em número de onda das duas linhas σ como uma função da densidade do fluxo magnético e a corrente nas espiras, respectivamente. A tabela a seguir resume os resultados:

I (A)	B (mT)	Δv (m ⁻¹)
4	417	43,0
5	527	52,2
6	638	59,0
8	810	75,4
10	911	83,6

2. A diferença em número de ondas das linhas σ com relação à linhas centrais é Δv /2. Para elétrons radiantes isto significa, por exemplo, uma mudança na energia de

$$\Delta E = E_{L,ML} - E_{L-1,ML-1} = hc \frac{\Delta v}{2}$$
(11)

Por outro lado a mudança na energia de ΔE é proporcional à densidade de fluxo magnético B. O fator de proporcionalidade entre ΔE e B é μ_B , o magneton de Bohr.

$$\Delta E = \mu_B B \tag{12}$$

A combinação das equações (11) e (12) resulta em uma expressão para μ_B :

$$\mu_{\rm B} = hc \ \frac{\Delta v}{2B} \tag{13}$$

Na Fig. 8 $\frac{\Delta v}{2B}$ foi representado em função da densidade de fluxo magnético B. Da reta de regressão nós encontramos um valor médio e o respectivo desvio padrão. Assim,

$$\mu_{\rm B}$$
 = hc. $\frac{\Delta v}{2B}$ = (9,06 ± 0,46)x10⁻²⁴ J/T

O valor da literatura para o magneton de Bohr é:

$$\mu_{B,Lit.} = 9,273 \times 10^{-24} \text{ J/T}$$

3. O eletromagneto é girado de 90° para observar o efeito Zeeman longitudinal. Na presença de um campo magnético (uma corrente na espira de 8 A é recomendado) cada um dos anéis é sempre desdobrado em dois, qualquer que seja a posição que o analisador venha a estar.

^{**} Note que nem todos os valores disponíveis de D-podem ser usados. Somente os alternados evitam perda de informação.

Uma placa $\lambda/4$ é usada geralmente para converter luz polarizada linearmente em polarização elíptica. Neste experimento a placa $\lambda/4$ é usada de forma oposta. Especificamente, através das placas de $\lambda/4$, inseridas manualmente entre L₂ e o analisador, a luz do efeito Zeeman longitudinal é analisada. Se o eixo óptico da placa $\lambda/4$ coincide com a vertical, é observado que um dos anéis desaparece se o analisador fizer um ângulo de +45° com a vertical enquanto que o outro anel desaparece para uma posição de – 45°. Isto significa que a luz do efeito Zeeman longitudinal é polarizada circularmente (no sentido oposto).

Fig. 8: Desdobramento Zeeman da linha espectral λ = 643,8 nm em função da densidade de fluxo B.