

Roteiro elaborado com base na documentação que acompanha o conjunto por: *Ricardo Barthem* - Instituto de Física - UFRJ

Tópicos Relacionados

Polarização da luz, birrefração, anisotropia óptica, modulação da luz, modulador eletro-óptico, elemento PLZT.

Princípio e Objetivo

Um feixe de luz monocromática, polarizada verticalmente, incide em um elemento PLZT (composto chumbo, lantânio, zircônio e titânio - Pb_{1-x} La_x Zr_{1-y} Ti_{y-}) o qual é montado em um suporte a 45° com a vertical. Um campo elétrico é aplicado ao elemento PLZT tornando-o birrefrativo. O deslocamento de fase entre o feixe luminoso ordinário e o extraordinário após o elemento PLZT é registrado em função da voltagem aplicada e mostra-se que o deslocamento de fase é proporcional ao quadrado da intensidade do campo elétrico respectivo da voltagem aplicada. A constante Kerr para o elemento PLZT é calculada a partir da constante de proporcionalidade.

No passado, o efeito Kerr era comumente demonstrado com nitrobenzeno. Como este produto é muito tóxico e necessita de uma voltagem muito alta de alguns kV, o elemento PLZT representa uma alternativa atrativa já que necessita somente de algunas centenas de volts.

Equipamento

	127 V	220 V	
Distribuidor	06024.00	06024.00	1
multímetro digital	07134.00	07134.00	2
Cabo de conexão, 500 mm, amarelo	07361.02	07361.02	1
Cabo de conexão, 750 mm, vermelho	07362.01	07362.01	3
Cabo de conexão, 750 mm, azul	07362.04	07362.04	3
Cabo blindado, BNC, I 750 mm	07542.11	07542.11	1
Adaptador, BNC-encaixe/4mm par de plug	07542.27	07542.27	1
Fotocélula, silício	07937.00	07937.00	1
Laser,He-Ne 1.0 mW,220V AC e	08181.98	08181.94	1
Banco de perfil óptico, I 1000mm	08282.00	08282.00	1
Base para banco de perfil óptico, ajustável	08284.00	08284.00	2
Suporte deslizante p/ banco óptico. h = 80mm	08286.02	08286.02	5
Filtro polarizador	08610.00	08610.00	2
Célula Kerr, elemento plzt	08641.00	08641.00	1
Amplificador de medidas universal e	13626.98	13626.93	1
Gerador de freqüência 1MHz e	13650.98	13650.93	1
Unidade de alimentação de alta voltagem, 0-10kV e	13670.98	13670.93	1
Alto falantes, 8 Ohm/5 kOhm e	13765.00	13765.00	1
Suporte de lâmpada E10	17049.00	17049.00	1

Fig. 1: Arranjo experimental para demonstração do efeito Kerr.

Problemas

- O deslocamento de fase entre o feixe de luz normal e o extraordinário é registrado para diferentes voltagens aplicadas ao elemento PLZT respectivamente às diferentes intensidades de campo elétrico. A voltagem a meia-onda U deve ser determinada.
- Fazendo um gráfico do quadrado da voltagem aplicada versus o deslocamento de fase entre os feixes normal e extraordinário, deve ser mostrado que a relação entre as duas quantidades é aproximadamente linear. A partir do coeficiente angular da reta ajustada calcula-se a constante Kerr.

Arranjo Experimental e Procedimento

O experimento para a demonstração do efeito Kerr é montado conforme a Fig. 1. O elemento PLZT é conectado diretamente à fonte de alimentação de alta-tensão cuja voltagem pode ser alterada entre 0 e 1000 V, com grande precisão, através de um voltímetro digital conectado em paralelo à fonte de alta-tensão. **Não exceder 1000 V, caso contrário o elemento PLZT será danificado.** A fonte de luz é um laser He/Ne de potência de 1 mW.

Atenção: Nunca olhe diretamente para um feixe laser sem atenuação!

Importante: Antes de proceder com qualquer medida de intensidade luminosa, o laser de He/Ne deve ser ligado por cerca de 1 hora antes de forma a atingir um equilíbrio na potência da emissão. Além disso, após cada variação apreciável da voltagem aplicada ao elemento PLZT deve-se esperar em torno de 5 minutos até que a estrutura do cristal tenha se readaptado e uma leitura representativa da intensidade luminosa possa ser feita. É desnecessário dizer que todas as medidas devem ser feitas em uma sala escura. A parte não polarizada da luz (radiação de fundo) deve também ser levada em conta. Os valores medidos dependem da história do elemento PLZT. O número de máximos detectáveis também podem variar para diferentes elementos.

Como pode ser visto da Fig. 1, a luz do laser He/Ne, a qual é polarizada verticalmente ao passar através do polarizador, incide sobre o elemento PLZT o qual é mantido em um suporte a 45° com a vertical. A onda incidente linearmente polarizada pode ser vista como uma superposição de duas ondas oscilando "em fase", sendo uma polarizada perpendicularmente e a outra paralelamente ao elemento PLZT e ao campo elétrico que é aplicado sobre este elemento.

As duas ondas luminosas passam através do elemento PLZT a velocidades diferentes. A onda de luz que oscila paralelamente ao campo elétrico no elemento PLZT é atrasada com relação à onda luminosa que oscila perpendicularmente a este campo elétrico. Isto produz uma diferença de fase entre as duas ondas e a luz que passa pela célula de Kerr (elemento PLZT) será polarizada elipticamente. Isto faz com que o analisador, o qual é posicionado após a célula Kerr a um ângulo de 90° com relação ao polarizador, não possa mais ser capaz de bloquear a luz polarizada. A ação do elemento PLZT é de introduzir uma diferença de fase entre as duas ondas componentes da onda incidente linearmente polarizada. A Fig. 2 apresenta um exemplo para uma defasagem de $\lambda/4$ onde o resultado é uma onda emergente circularmente polarizada.

Fig. 2: Diagrama de uma célula para efeito Kerr onde há uma defasagem de $\lambda/4$ entre as duas componentes x e y da onda incidente linearmente polarizada a 45°. Neste caso, a onda emergente sai da célula com uma polarização circular.

Uma defasagem de 180° (λ /2), por exemplo, resulta em uma onda linearmente polarizada com seu eixo de polarização girado de 90° com relação à direção de incidência. Neste caso a voltagem aplicada é denominada de "voltagem meiaonda". A intensidade da luz após o analisador atinge seu máximo quando este é orientado a 90° com relação ao polarizador. Um fotodiodo de silício com amplificador é usado como detector para a intensidade luminosa após o analisador.

Foi em 1876 que John Kerr (1824-1907) descobriu que uma placa de vidro submetida a um forte campo elétrico tornavase birrefrativa. Logo tornou-se claro que o efeito não se baseava na deformação causada pelo campo elétrico já que o mesmo fenômeno foi observado em líquidos e mesmo em gases. Este efeito, denominado de Efeito Kerr, tem uma dependência quadrática com o campo elétrico aplicado. Um outro efeito eletro-óptico, primeiramente observado por W.C. Roentgen em quartzo, é um efeito eletro-óptico linear. É conhecido como efeito Pockels por ter sido estudado extensivamente por Carl Alwin Pockels (1865-1913). Materiais com centro de inversão, como por exemplo líquidos, não exibem efeito Pockels. O efeito eletro-óptico apresentado por materiais com centro de inversão é o efeito Kerr. Em materiais sem centro de inversão, o efeito Kerr, que aparece no termo de segundo grau da expansão do tensor impermeabilidade $\vartheta (1/n^2 = \vartheta = \varepsilon_0/\varepsilon)$, é mascarado pelo efeito Pockels, associado ao termo de primeiro grau da expansão de ϑ .

O elemento PLZT usado neste experimento tem a vantagem que a birrefração, representada pela constante Kerr, é mais que duas ordens de magnitude maior que para o nitrobenzeno. Tensões de poucas centenas de volts são suficientes para estudar os efeitos eletro-ópticos do elemento cerâmico. Este é transparente para comprimentos de onda de $0,4\mu$ m a 5,6 μ m. Sua composição química é descrita pela fórmula Pb_{0,9125} La_{0,0875} Zr_{0,65} Ti_{0,3503}. Com relação à transmissão da luz o elemento PLZT se comporta como um policristal transparente. Para λ = 632,8 nm sua taxa de transmissão é mais que 60%. Com respeito a um campo elétrico aplicado, ele se comporta como uma substância ferromagnética a qual é submetida a um campo magnético.

4

Fig. 3: Seção reta do elemento PLZT. o elemento ativo 1 do modulador é um paralelepípedo de altura 8 mm, espessura ℓ=1,5 mm e largura d=1,4 mm.

Dentro do elemento PLZT já existem domínios prepolarizados os quais crescem ou são reorientados pelo campo elétrico aplicado. Neste caso, o elemento torna-se opticamente anisotrópico respectivamente birrefrativo. Em atenção à acima mencionada modulação eletro-óptica, deve ser assinalado que o elemento pode trabalhar com modulações de freqüências até 100 kHz.

A largura d representa a distância entre os eletrodos. A intensidade do campo elétrico é dada pelar razão da voltagem aplicada sobre a distância entre os eletrodos. O caminho do feixe de luz dentro do elemento é igual à espessura ℓ do elemento. O elemento ativo 1 é encapsulado usando silicone hermético 2, um anel de isolamento 3 e cola entre duas placas de vidro 4. Para a cola óptica 5 foi usada o bálsamo Canadense. Fios 6 são fixados nas faces dos eletrodos do elemento e conectados à base do BNC da moldura 7.

Teoria e análise

Seja um feixe de luz monocromático, de comprimento de onda λ , polarizado verticalmente na direção \hat{y} e se propagando horizontalmente segundo o eixo \hat{z} . Este feixe incide normalmente sobre a superfície de um elemento PLZT cujo campo elétrico aplicado está orientado a 45° com a vertical, conforme o esquema da Fig. (4). A onda luminosa, cujo campo elétrico oscila paralelo ao campo elétrico aplicado, é chamado de feixe extraordinário enquanto que a onda que oscila perpendicularmente ao campo é denominada de feixe ordinário.

A aplicação de um campo elétrico no material produz uma pequena modificação no seu índice de refração de forma que podemos expandir o tensor impermeabilidade »

$$\frac{1}{n^2} = 3 = \frac{\varepsilon_0}{\varepsilon}$$

em uma série de potências do campo aplicado:

$$\mathfrak{s}_{ik} = \frac{\epsilon_0}{\epsilon_{ik}} = \mathfrak{s}_{ik}^0 + \sum_{j=1}^3 r_{ikj} E_j + \sum_{j=1}^3 \sum_{m=1}^3 \rho_{ikjm} E_j E_m + \cdots$$

onde $\epsilon_{ik}^0 = \frac{\epsilon_0}{\vartheta_{ik}^0}$ é a constante dielétrica a campo zero. O termo linear descreve o efeito Pockels e as constantes r_{ikj} são

coeficientes eletro-ópticos lineares ou coeficientes de Pockels. O termo apresentando uma dependência quadrática com o campo elétrico descreve o efeito Kerr. Os coeficientes ρ_{ikjm} são coeficientes eletro-ópticos quadráticos ou coeficientes Kerr. Os coeficientes dos dois tensores $\tilde{r} \in \rho$ são determinados pela simetria do material. Substâncias com centro de

(1)

simetria, ou centro de inversão, não exibem efeito Pockels. Nestas substâncias a ação do campo elétrico em um sentido ou no sentido inverso tem de ser a mesma. Como a variação do índice de refração depende do sentido do campo, isto é,

 $\Delta n_{+} = rE$ e $\Delta n_{-} = -rE$ (r = constante do efeito eletro-óptico linear)

$$\Delta n_+ = \Delta n_- = 0 \rightarrow r = 0.$$

Nestas substâncias apenas o efeito Kerr está presente e não é mascarado pelo efeito Pockels que, quando presente, é muito mais intenso que o Kerr.

Aplicando o campo elétrico segundo um eixo x' = e (denominado eixo extraordinário) anulamos as componentes $E_2 = E_3 = 0$ e deixamos $E_1 = E$. Com uma orientação adequada do sistema de coordenadas segundo os eixos principais tornamos nulos todos os elementos do tensor $\tilde{\rho}$ com exceção dos elementos principais que ficam iguais a ρ . Assim o índice de refração paralelo ao campo elétrico é dado por:

$$\Theta_{I/I} = \Theta^0 + \rho \mathsf{E}^2 = \frac{1}{\mathsf{n}_{\mathsf{e}}^2} \tag{2}$$

enquanto que o índice de refração da componente perpendicular ao campo é descrito apenas por:

$$\Theta_{\perp} = \vartheta^0 = \frac{1}{n_0^2} \tag{3}$$

Portanto, na presença do campo elétrico aplicado a substância isotrópica se comporta como um material birrefringente de índices de refração extraordinário n_e e ordinário n_o . Como a mudança do índice de n_o para n_e é pequena, podemos fazer uma aproximação:

Fig. 4: Esquema de uma onda verticalmente polarizada incidindo sobre um elemento PLZT cujo campo elétrico aplicado faz um ângulo de 45° com a vertical.

Um feixe luminoso polarizado incidindo sobre um elemento PLZT cuja direção do campo elétrico aplicado faz um ângulo de 45° com a direção da polarização do feixe incidente (ver Fig. 4), será descrito pelas componentes da luz segundo os eixos ordinários e extraordinários. Para uma onda incidente cuja dependência temporal do campo elétrico, na superfície de incidência do elemento PLZT, seja dada por

$$\vec{\mathsf{E}}_{\mathsf{inc}} = \mathsf{E}_0 \cdot \cos \omega t \cdot \hat{\mathsf{y}} \tag{5}$$

podemos escrever o vetor campo elétrico segundo os eixos x'//e e y'//o, onde e e o correspondem às direções dos eixos extraordinário (// E_{aplic}) e ordinário ($\perp E_{aplic}$), respectivamente, como:

$$E_{x}' = E_{0}.sen45^{\circ}.cos\omega t = E_{0}.\sqrt{2/2.cos\omega t}$$

$$E_{y}' = E_{0}.cos45^{\circ}.cos\omega t = E_{0}.\sqrt{2/2.cos\omega t}.$$
(6)

Ao percorrer uma distância l as duas componentes sofrem diferença no caminho óptico de

$$\ell (n_o - n_e) = \ell \Delta n \tag{7}$$

Isto corresponde a um deslocamento de fase entre si de

$$\delta = 2\pi \, \frac{\ell}{\lambda} \, \Delta \mathbf{n} \tag{8}$$

onde λ é o comprimento de onda da luz no vácuo. ($\lambda_{HeNe} = 632,8$ nm). Na superfície emergente, as dependências temporais destas duas componentes é dada, a menos de uma fase idêntica a ambas de $\phi = 2\pi \frac{\ell}{2} n_e$, por:

 $E_x' = E_0.\sqrt{2/2.\cos\omega t} e E_y' = E_0.\sqrt{2/2.\cos(\omega t+\delta)}.$

Estas duas componentes podem, agora, ser associadas para descrever as componentes do campo elétrico do feixe luminoso emergente em termos das componentes em horizontal e vertical:

Fig. 5: Diferentes polarizações elípticas produzidas por defasagens introduzidas entre as componentes ordinária e extraordinária. A onda incidente é verticalmente polarizada e o campo elétrico aplicado faz um ângulo de 45° com a vertical.

A intensidade do feixe luminoso emergente polarizado horizontalmente, isto é, a componente da onda polarizada ortogonalmente à incidente, é obtida através da média temporal de E_x^2 . Como:

$$I_{o} \propto \left\langle \vec{E}_{inc}^{2} \right\rangle = \frac{\int_{t=0}^{2\pi/\omega} E_{0}^{2} \cdot \cos^{2} \omega t \cdot dt}{\int_{t=0}^{2\pi/\omega} dt} = \frac{E_{0}^{2}}{2}$$
(10)

temos que

$$I_{x} \propto \left\langle E_{x}^{2} \right\rangle = \frac{\int_{t=0}^{2\pi/\omega} \frac{E_{0}^{2} \cdot \left[\cos(\omega t) - \cos(\omega t + \delta) \right]^{2} \cdot dt}{\int_{t=0}^{2\pi/\omega} dt} = \frac{E_{0}^{2}}{2} \cdot \operatorname{sen}^{2}(\delta/2)$$
(11)

A intensidade após o analisador orientado ortogonalmente ao polarizador é, portanto,

$$I = I_0 \mathrm{sen}^2 \frac{\delta}{2} \tag{12}$$

sendo I₀ a luminosidade atrás do analisador quando o polarizador e o analisador estão alinhados na mesma direção e o campo elétrico no elemento PLZT é zero. Experimentalmente é observado que a diferença do índice de refração ordinário para o extraordinário, devida à birrefringência induzida, é:

$$\Delta n = K.E^{2}.\lambda \tag{13}$$

onde K é a constante Kerr. Esta constante pode também ser expressa em termos do coeficiente eletro-óptico quadrático ρ através das relações (4) e (13):

$$\Delta n = \frac{n_0^3 \cdot \rho E^2}{2} = K \cdot E^2 \cdot \lambda \quad \rightarrow K = \frac{n_0^3 \rho}{2\lambda}$$
(14)

A diferença Δn de índices produz, finalmente, uma diferença de fase entre as duas componentes ortogonalmente polarizadas de

$$\delta = 2\pi \operatorname{K} \ell \operatorname{E}^2$$
(15)

O campo elétrico aplicado E pode ser expresso pela voltagem aplicada U e a distância d entre-eletrodos

(9)

рнуже

 $E = \frac{U}{d}$

conhecidas.

Após substituir (15) em (12) e usando (16), obtemos:

$$I = I_0 \operatorname{sen}^2 \pi \frac{K\ell U^2}{d^2}$$
(17)

Resolvendo a equação para U² temos:

$$U^{2} = \frac{d^{2}}{K\pi\ell} \cdot \arcsin\sqrt{\frac{I}{I_{0}}}$$
(18)

Do gráfico de U² em função de $\delta = 2 \cdot \arcsin \sqrt{\frac{1}{I_0}}$, uma linha reta aproximada é obtida e a constante Kerr pode ser derivada do seu coeficiente angular, já que as dimensões geométricas ℓ e d da célula Kerr (elemento PLZT) são

1. A intensidade luminosa relativa após o analisador é medida como uma função da voltagem U aplicada ao elemento PLZT. A Tab. 1 apresenta alguns valores medidos. O gráfico correspondente é mostrado na Fig. 6. O deslocamento da fase é claramente indicada assim como as voltagens para os quais as intensidades luminosas máximas e mínimas são observadas. Na voltagem de 615 V a intensidade luminosa atinge um máximo pela primeira vez. Neste caso os feixes normal e extraordinário são deslocados na fase de 180°.Portanto, 615 V é a "voltagem de meia onda". É uma função da composição do elemento PLZT e de sua temperatura.

Fig. 6: Intensidade luminosa relativa I/I_0 após o analisador em função da voltagem U aplicada ao elemento PLZT e deslocamento de fase Δ entre o feixe normal e o extraordinário.

2. Na Fig. 7 o quadrado da voltagem aplicada ao elemento PLZT é representado como uma função do deslocamento da fase entre os feixes ordinário e extraordinário Através de uma regressão linear uma linha reta pode ser ajustada cujo coeficiente angular é $1,36x10^3$ (V²/grau). Usando a Eq. (6) com $\ell = 1,5$ mm e d = 1,4 mm um valor de

 $K = 2,7 \times 10^{-9} \text{ m/V}^2$

para a constante Kerr deste elemento.

7

(16)

ЭН

1309 – Efeito Kerr

Tab. 1: Voltagem U ao longo do elemento PLZT, intensidade luminosa I após o analisador e deslocamento de fase $\Delta/2$ entre o feixe normal e o extraordinário.

U (Volt)	I	I/I _o	$\frac{\delta}{2} = \operatorname{arc.sen} \sqrt{\frac{I}{I_0}}$		
300	0.043	0.034	10.6		
350	0.090	0.071	15.5		
400	0.190	0.150	22.8		
450	0.385	0.304	33.5		
500	0.695	0.549	47.8		
550	1.005	0.794	63.0		
600	1.235	0.976	81.1		
650	1.165	0.921	73.7		
700	0.685	0.542	47.4		
750	0.017	0.013	6.6		
800	0.355	0.281	32.0		
850	1.085	0.858	67.8		
900	1.105	0.874	69.2		
950	0.235	0.186	25.5		
1000	0.405	0.320	34.3		
(I em unidades arbitrárias, I ₀ = 1.265)					

Nota: Este valor pode variar para histórias diferentes e elementos distintos.

Fig. 7: Quadrado da voltagem aplicada ao elemento PLZT como uma função do deslocamento de fase δ entre o feixe normal e o extraordinário.

Opção: Modulador eletro-óptico

Pela superposição de uma voltagem AC sobre o campo elétrico constante o elemento PLZT transforma-se em um modulador acusto-óptico cujo funcionamento é demonstrado acústicamente usando-se uma voltagem AC de freqüência variável dentro do espectro audível. A saída da fonte geradora de freqüência é conectada em série com uma voltagem DC de 500 V. A voltagem DC modulada é aplicada ao elemento PLZT. O voltímetro na saída do amplificador universal é substituído por um alto-falante. A saída do amplificador universal (amplificação V = 10^2) é conectada à entrada de 5 K Ω

do alto-falante. A amplitude do gerador de freqüência deve ser ajustada de tal forma que um som livre de ruído seja ouvido no alto-falante.

Alterando a freqüência do gerador em torno de 1 kHz, pode-se demonstrar a capacidade do elemento PLZT de operar como um modulador eletro-óptico.

Fig. 8: Arranjo para modulador eletro-óptico.